These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


277 related items for PubMed ID: 16377777

  • 21. Naturally-occurring modification restricts the anticodon domain conformational space of tRNA(Phe).
    Stuart JW, Koshlap KM, Guenther R, Agris PF.
    J Mol Biol; 2003 Dec 12; 334(5):901-18. PubMed ID: 14643656
    [Abstract] [Full Text] [Related]

  • 22. Temperature jump relaxation studies on the interactions between transfer RNAs with complementary anticodons. The effect of modified bases adjacent to the anticodon triplet.
    Houssier C, Grosjean H.
    J Biomol Struct Dyn; 1985 Oct 12; 3(2):387-408. PubMed ID: 3917029
    [Abstract] [Full Text] [Related]

  • 23. Discriminating duplex and hairpin oligonucleotides using chemical shifts: application to the anticodon stem-loop of Escherichia coli tRNA(Phe).
    Cabello-Villegas J, Nikonowicz EP.
    Nucleic Acids Res; 2000 Aug 01; 28(15):E74. PubMed ID: 10908367
    [Abstract] [Full Text] [Related]

  • 24. Anticodon domain modifications contribute order to tRNA for ribosome-mediated codon binding.
    Vendeix FA, Dziergowska A, Gustilo EM, Graham WD, Sproat B, Malkiewicz A, Agris PF.
    Biochemistry; 2008 Jun 10; 47(23):6117-29. PubMed ID: 18473483
    [Abstract] [Full Text] [Related]

  • 25. Hypermodified nucleosides in the anticodon of tRNALys stabilize a canonical U-turn structure.
    Sundaram M, Durant PC, Davis DR.
    Biochemistry; 2000 Oct 17; 39(41):12575-84. PubMed ID: 11027137
    [Abstract] [Full Text] [Related]

  • 26. S. cerevisiae Trm140 has two recognition modes for 3-methylcytidine modification of the anticodon loop of tRNA substrates.
    Han L, Marcus E, D'Silva S, Phizicky EM.
    RNA; 2017 Mar 17; 23(3):406-419. PubMed ID: 28003514
    [Abstract] [Full Text] [Related]

  • 27. Tertiary structural analysis of Escherichia coli lysine tRNA.
    Hayashi N, Kawai G, Takayanagi M, Noguchi T, Ueda T, Nishikawa K, Miura K, Miyazawa T, Yokoyama S, Watanabe K.
    Nucleic Acids Symp Ser; 1993 Mar 17; (29):195-6. PubMed ID: 8247766
    [Abstract] [Full Text] [Related]

  • 28. Translocation of a tRNA with an extended anticodon through the ribosome.
    Phelps SS, Gaudin C, Yoshizawa S, Benitez C, Fourmy D, Joseph S.
    J Mol Biol; 2006 Jul 14; 360(3):610-22. PubMed ID: 16787653
    [Abstract] [Full Text] [Related]

  • 29. The role of modifications in codon discrimination by tRNA(Lys)UUU.
    Murphy FV, Ramakrishnan V, Malkiewicz A, Agris PF.
    Nat Struct Mol Biol; 2004 Dec 14; 11(12):1186-91. PubMed ID: 15558052
    [Abstract] [Full Text] [Related]

  • 30. Structural significance of hypermodified nucleic acid base hydroxywybutine (OHyW) which occur at 37th position in the anticodon loop of yeast tRNA(Phe).
    Kumbhar NM, Kumbhar BV, Sonawane KD.
    J Mol Graph Model; 2012 Sep 14; 38():174-85. PubMed ID: 23073221
    [Abstract] [Full Text] [Related]

  • 31. Loop stereochemistry and dynamics in transfer RNA.
    Westhof E, Dumas P, Moras D.
    J Biomol Struct Dyn; 1983 Oct 14; 1(2):337-55. PubMed ID: 6401114
    [Abstract] [Full Text] [Related]

  • 32.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 33. Importance of a tRNA anticodon loop modification and a conserved, noncanonical anticodon stem pairing in tRNACGGProfor decoding.
    Nguyen HA, Hoffer ED, Dunham CM.
    J Biol Chem; 2019 Apr 05; 294(14):5281-5291. PubMed ID: 30782843
    [Abstract] [Full Text] [Related]

  • 34. [Binding of a fragment of yeast phenylalanyl tRNA containing an anticodon loop with 30S and 70S ribosomes from Escherichia coli. The role of guanosine-42 in this interaction].
    Nekhaĭ SA, Saminskiĭ EM.
    Mol Biol (Mosk); 1994 Apr 05; 28(3):658-64. PubMed ID: 8052257
    [Abstract] [Full Text] [Related]

  • 35. Ribosomal binding of modified tRNA anticodons related to thermal stability.
    Ashraf SS, Guenther R, Ye W, Lee Y, Malkiewicz A, Agris PF.
    Nucleic Acids Symp Ser; 1997 Apr 05; (36):58-60. PubMed ID: 9478206
    [Abstract] [Full Text] [Related]

  • 36.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 37. Major identity determinants for enzymatic formation of ribothymidine and pseudouridine in the T psi-loop of yeast tRNAs.
    Becker HF, Motorin Y, Sissler M, Florentz C, Grosjean H.
    J Mol Biol; 1997 Dec 12; 274(4):505-18. PubMed ID: 9417931
    [Abstract] [Full Text] [Related]

  • 38. 5-Methylcytidine is required for cooperative binding of Mg2+ and a conformational transition at the anticodon stem-loop of yeast phenylalanine tRNA.
    Chen Y, Sierzputowska-Gracz H, Guenther R, Everett K, Agris PF.
    Biochemistry; 1993 Sep 28; 32(38):10249-53. PubMed ID: 8399153
    [Abstract] [Full Text] [Related]

  • 39. The role of 5-methylcytidine in the anticodon arm of yeast tRNA(Phe): site-specific Mg2+ binding and coupled conformational transition in DNA analogs.
    Dao V, Guenther RH, Agris PF.
    Biochemistry; 1992 Nov 17; 31(45):11012-9. PubMed ID: 1445839
    [Abstract] [Full Text] [Related]

  • 40. Mechanisms of molecular recognition of tRNAs by aminoacyl-tRNA synthetases.
    Nureki O, Tateno M, Niimi T, Kohno T, Muramatsu T, Kanno H, Muto Y, Giege R, Yokoyama S.
    Nucleic Acids Symp Ser; 1991 Nov 17; (25):165-6. PubMed ID: 1726806
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 14.