These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


197 related items for PubMed ID: 16378675

  • 1. Dissipation and maintenance of stable states in an enzymatic system: analysis and simulation.
    Liu J.
    Biophys Chem; 2006 Apr 01; 120(3):207-14. PubMed ID: 16378675
    [Abstract] [Full Text] [Related]

  • 2. [Enzyme inactivation in the reaction process. Regulatory role].
    Varfolomeev SD.
    Biokhimiia; 1984 May 01; 49(5):723-35. PubMed ID: 6743701
    [Abstract] [Full Text] [Related]

  • 3. General equation of steady-state enzyme kinetics using net rate constants and its applicaiton to the kinetic analysis of catalase reaction.
    Yomo T, Yamano T, Yamamoto K, Urabe I.
    J Theor Biol; 1997 Oct 07; 188(3):301-12. PubMed ID: 9344734
    [Abstract] [Full Text] [Related]

  • 4. Concentration profiles near an activated enzyme.
    Park S, Agmon N.
    J Phys Chem B; 2008 Sep 25; 112(38):12104-14. PubMed ID: 18759406
    [Abstract] [Full Text] [Related]

  • 5. Quasi-steady-state laws in enzyme kinetics.
    Li B, Shen Y, Li B.
    J Phys Chem A; 2008 Mar 20; 112(11):2311-21. PubMed ID: 18303867
    [Abstract] [Full Text] [Related]

  • 6. Exploring multiplicity conditions in enzymatic reaction networks.
    Otero-Muras I, Banga JR, Alonso AA.
    Biotechnol Prog; 2009 Mar 20; 25(3):619-31. PubMed ID: 19496142
    [Abstract] [Full Text] [Related]

  • 7. [Self-oscillations in an open biochemical substrate-inhibited reaction interacting with the enzyme-producing system].
    Nazarenko VG, Sel'kov EE.
    Biofizika; 1981 Mar 20; 26(3):428-33. PubMed ID: 7260153
    [Abstract] [Full Text] [Related]

  • 8. Control analysis of unbranched enzymatic chains in states of maximal activity.
    Heinrich R, Klipp E.
    J Theor Biol; 1996 Oct 07; 182(3):243-52. PubMed ID: 8944155
    [Abstract] [Full Text] [Related]

  • 9. [Simple kinetic models explaining critical phenomena in enzymatic reactions with isomerization of the enzyme and substrate].
    Gol'dshteĭn BN, Ivanova AN.
    Mol Biol (Mosk); 1988 Oct 07; 22(5):1381-92. PubMed ID: 3221858
    [Abstract] [Full Text] [Related]

  • 10. [Oscillations and resonance phenomena in the simple, open enzymatic reaction--S-E-P-- reacting with an enzyme-forming system].
    Sel'kov EE, Nazarenko VG.
    Biofizika; 1981 Oct 07; 26(1):17-21. PubMed ID: 7225446
    [Abstract] [Full Text] [Related]

  • 11. [Stationary kinetics of multisubstrate enzymatic reactions. Inhibition by reaction products, reversible and irreversible inhibitors].
    Vrzheshch PV.
    Biokhimiia; 1988 Oct 07; 53(10):1704-11. PubMed ID: 3233227
    [Abstract] [Full Text] [Related]

  • 12. Reactant stationary approximation in enzyme kinetics.
    Hanson SM, Schnell S.
    J Phys Chem A; 2008 Sep 18; 112(37):8654-8. PubMed ID: 18714952
    [Abstract] [Full Text] [Related]

  • 13. Kinetic constraints for formation of steady states in biochemical networks.
    Liu J.
    Biophys J; 2005 May 18; 88(5):3212-23. PubMed ID: 15731381
    [Abstract] [Full Text] [Related]

  • 14. [Kinetic analysis of the possible effect of a constant magnetic field on the rate of enzymatic reactions].
    Vanag VK, Kuznetsov AN.
    Biofizika; 1984 May 18; 29(1):23-9. PubMed ID: 6324883
    [Abstract] [Full Text] [Related]

  • 15. Role of conformational dynamics in kinetics of an enzymatic cycle in a nonequilibrium steady state.
    Min W, Xie XS, Bagchi B.
    J Chem Phys; 2009 Aug 14; 131(6):065104. PubMed ID: 19691414
    [Abstract] [Full Text] [Related]

  • 16. [Analysis of a simple open biochemical reaction S leads to P by means of E interacting with an enzyme-producing system].
    Sel'kov EE, Nazarenko VG.
    Biofizika; 1980 Aug 14; 25(6):1006-10. PubMed ID: 7448210
    [Abstract] [Full Text] [Related]

  • 17. Finite concentration effects on diffusion-controlled reactions.
    Senapati S, Wong CF, McCammon JA.
    J Chem Phys; 2004 Oct 22; 121(16):7896-900. PubMed ID: 15485251
    [Abstract] [Full Text] [Related]

  • 18. Theory and simulation of diffusion-controlled Michaelis-Menten kinetics for a static enzyme in solution.
    Park S, Agmon N.
    J Phys Chem B; 2008 May 15; 112(19):5977-87. PubMed ID: 18220382
    [Abstract] [Full Text] [Related]

  • 19. Steady state enzyme velocities that are independent of [enzyme]: an important behavior in many membrane and particle-bound states.
    Nelsestuen GL, Martinez MB.
    Biochemistry; 1997 Jul 29; 36(30):9081-6. PubMed ID: 9254133
    [Abstract] [Full Text] [Related]

  • 20. A hybrid model of anaerobic E. coli GJT001: combination of elementary flux modes and cybernetic variables.
    Kim JI, Varner JD, Ramkrishna D.
    Biotechnol Prog; 2008 Jul 29; 24(5):993-1006. PubMed ID: 19194908
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 10.