These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


174 related items for PubMed ID: 16378716

  • 21.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 22. Antagonistic control of powdery mildew host cell entry by barley calcium-dependent protein kinases (CDPKs).
    Freymark G, Diehl T, Miklis M, Romeis T, Panstruga R.
    Mol Plant Microbe Interact; 2007 Oct; 20(10):1213-21. PubMed ID: 17918623
    [Abstract] [Full Text] [Related]

  • 23. DNA polymorphism among barley NILs of cv. Pallas, carrying genes for resistance to powdery mildew (Blumeria graminis f. sp. hordei).
    Czembor PC, Czembor JH.
    J Appl Genet; 2004 Oct; 45(2):183-7. PubMed ID: 15131349
    [Abstract] [Full Text] [Related]

  • 24.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 25.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 26. Local and systemic effects of oxylipins on powdery mildew infection in barley.
    Cowley T, Walters D.
    Pest Manag Sci; 2005 Jun; 61(6):572-6. PubMed ID: 15668923
    [Abstract] [Full Text] [Related]

  • 27.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 28.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 29.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 30. Effect of the Penicillium chrysogenum antifungal protein (PAF) on barley powdery mildew and wheat leaf rust pathogens.
    Barna B, Leiter E, Hegedus N, Bíró T, Pócsi I.
    J Basic Microbiol; 2008 Dec; 48(6):516-20. PubMed ID: 18798177
    [Abstract] [Full Text] [Related]

  • 31. Stable transformation of erysiphe graminis an obligate biotrophic pathogen of barley.
    Chaure P, Gurr SJ, Spanu P.
    Nat Biotechnol; 2000 Feb; 18(2):205-7. PubMed ID: 10657129
    [Abstract] [Full Text] [Related]

  • 32.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 33.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 34.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 35. Pathogen-derived nitric oxide influences formation of the appressorium infection structure in the phytopathogenic fungus Blumeria graminis.
    Prats E, Carver TL, Mur LA.
    Res Microbiol; 2008 Feb; 159(6):476-80. PubMed ID: 18554873
    [Abstract] [Full Text] [Related]

  • 36.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 37. Successful induction and recognition of conidiation, conidial germination and chlamydospore formation in pure culture of Morchella.
    Yuan BH, Li H, Liu L, Du XH.
    Fungal Biol; 2021 Apr; 125(4):285-293. PubMed ID: 33766307
    [Abstract] [Full Text] [Related]

  • 38. Very-long-chain aldehydes promote in vitro prepenetration processes of Blumeria graminis in a dose- and chain length-dependent manner.
    Hansjakob A, Bischof S, Bringmann G, Riederer M, Hildebrandt U.
    New Phytol; 2010 Dec; 188(4):1039-54. PubMed ID: 20731784
    [Abstract] [Full Text] [Related]

  • 39.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 40. Analysis of a Blumeria graminis-secreted lipase reveals the importance of host epicuticular wax components for fungal adhesion and development.
    Feng J, Wang F, Liu G, Greenshields D, Shen W, Kaminskyj S, Hughes GR, Peng Y, Selvaraj G, Zou J, Wei Y.
    Mol Plant Microbe Interact; 2009 Dec; 22(12):1601-10. PubMed ID: 19888825
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 9.