These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


205 related items for PubMed ID: 16388938

  • 21.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 22. Role of gliotoxin in the symbiotic and pathogenic interactions of Trichoderma virens.
    Vargas WA, Mukherjee PK, Laughlin D, Wiest A, Moran-Diez ME, Kenerley CM.
    Microbiology (Reading); 2014 Oct; 160(Pt 10):2319-2330. PubMed ID: 25082950
    [Abstract] [Full Text] [Related]

  • 23.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 24. QID74 Cell wall protein of Trichoderma harzianum is involved in cell protection and adherence to hydrophobic surfaces.
    Rosado IV, Rey M, Codón AC, Govantes J, Moreno-Mateos MA, Benítez T.
    Fungal Genet Biol; 2007 Oct; 44(10):950-64. PubMed ID: 17300969
    [Abstract] [Full Text] [Related]

  • 25. TBRG-1 a Ras-like protein in Trichoderma virens involved in conidiation, development, secondary metabolism, mycoparasitism, and biocontrol unveils a new family of Ras-GTPases.
    Dautt-Castro M, Estrada-Rivera M, Olguin-Martínez I, Rocha-Medina MDC, Islas-Osuna MA, Casas-Flores S.
    Fungal Genet Biol; 2020 Mar; 136():103292. PubMed ID: 31730908
    [Abstract] [Full Text] [Related]

  • 26. Seed-borne endophytic Bacillus velezensis LHSB1 mediate the biocontrol of peanut stem rot caused by Sclerotium rolfsii.
    Chen L, Wu YD, Chong XY, Xin QH, Wang DX, Bian K.
    J Appl Microbiol; 2020 Mar; 128(3):803-813. PubMed ID: 31705716
    [Abstract] [Full Text] [Related]

  • 27. In vivo study of trichoderma-pathogen-plant interactions, using constitutive and inducible green fluorescent protein reporter systems.
    Lu Z, Tombolini R, Woo S, Zeilinger S, Lorito M, Jansson JK.
    Appl Environ Microbiol; 2004 May; 70(5):3073-81. PubMed ID: 15128569
    [Abstract] [Full Text] [Related]

  • 28. Cyclosporine A from a nonpathogenic Fusarium oxysporum suppressing Sclerotinia sclerotiorum.
    Rodríguez MA, Cabrera G, Godeas A.
    J Appl Microbiol; 2006 Mar; 100(3):575-86. PubMed ID: 16478497
    [Abstract] [Full Text] [Related]

  • 29. Thiol redox state and oxidative stress affect sclerotial differentiation of the phytopathogenic fungi Sclerotium rolfsii and Sclerotinia sclerotiorum.
    Patsoukis N, Georgiou CD.
    J Appl Microbiol; 2008 Jan; 104(1):42-50. PubMed ID: 17850300
    [Abstract] [Full Text] [Related]

  • 30. Characterisation of a Trichoderma hamatum monooxygenase gene involved in antagonistic activity against fungal plant pathogens.
    Carpenter MA, Ridgway HJ, Stringer AM, Hay AJ, Stewart A.
    Curr Genet; 2008 Apr; 53(4):193-205. PubMed ID: 18231791
    [Abstract] [Full Text] [Related]

  • 31. Functional analysis of tvsp1, a serine protease-encoding gene in the biocontrol agent Trichoderma virens.
    Pozo MJ, Baek JM, García JM, Kenerley CM.
    Fungal Genet Biol; 2004 Mar; 41(3):336-48. PubMed ID: 14761794
    [Abstract] [Full Text] [Related]

  • 32. The role of humic fractions from soil and compost in controlling the growth in vitro of phytopathogenic and antagonistic soil-borne fungi.
    Loffredo E, Berloco M, Senesi N.
    Ecotoxicol Environ Saf; 2008 Mar; 69(3):350-7. PubMed ID: 18177939
    [Abstract] [Full Text] [Related]

  • 33. Trichoderma mitogen-activated protein kinase signaling is involved in induction of plant systemic resistance.
    Viterbo A, Harel M, Horwitz BA, Chet I, Mukherjee PK.
    Appl Environ Microbiol; 2005 Oct; 71(10):6241-6. PubMed ID: 16204544
    [Abstract] [Full Text] [Related]

  • 34. Biological control of Sclerotinia sclerotiorum attacking soybean plants. Degradation of the cell walls of this pathogen by Trichoderma harzianum (BAFC 742). Biological control of Sclerotinia sclerotiorum by Trichoderma harzianum.
    Menendez AB, Godeas A.
    Mycopathologia; 1998 Oct; 142(3):153-60. PubMed ID: 16284851
    [Abstract] [Full Text] [Related]

  • 35.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 36.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 37. A novel GFP-based approach for screening biocontrol microorganisms in vitro against Dothistroma septosporum.
    McDougal R, Yang S, Schwelm A, Stewart A, Bradshaw R.
    J Microbiol Methods; 2011 Oct; 87(1):32-7. PubMed ID: 21777628
    [Abstract] [Full Text] [Related]

  • 38. Antipathy of Trichoderma against Sclerotium rolfsii Sacc.: Evaluation of Cell Wall-Degrading Enzymatic Activities and Molecular Diversity Analysis of Antagonists.
    Hirpara DG, Gajera HP, Hirpara HZ, Golakiya BA.
    J Mol Microbiol Biotechnol; 2017 Oct; 27(1):22-28. PubMed ID: 28081530
    [Abstract] [Full Text] [Related]

  • 39. Sm1, a proteinaceous elicitor secreted by the biocontrol fungus Trichoderma virens induces plant defense responses and systemic resistance.
    Djonović S, Pozo MJ, Dangott LJ, Howell CR, Kenerley CM.
    Mol Plant Microbe Interact; 2006 Aug; 19(8):838-53. PubMed ID: 16903350
    [Abstract] [Full Text] [Related]

  • 40. Trichoderma species mediated differential tolerance against biotic stress of phytopathogens in Cicer arietinum L.
    Saxena A, Raghuwanshi R, Singh HB.
    J Basic Microbiol; 2015 Feb; 55(2):195-206. PubMed ID: 25205162
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 11.