These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
538 related items for PubMed ID: 16392138
1. Crosslinked poly(epsilon-caprolactone/D,L-lactide)/bioactive glass composite scaffolds for bone tissue engineering. Meretoja VV, Helminen AO, Korventausta JJ, Haapa-aho V, Seppälä JV, Närhi TO. J Biomed Mater Res A; 2006 May; 77(2):261-8. PubMed ID: 16392138 [Abstract] [Full Text] [Related]
2. Three-dimensional, bioactive, biodegradable, polymer-bioactive glass composite scaffolds with improved mechanical properties support collagen synthesis and mineralization of human osteoblast-like cells in vitro. Lu HH, El-Amin SF, Scott KD, Laurencin CT. J Biomed Mater Res A; 2003 Mar 01; 64(3):465-74. PubMed ID: 12579560 [Abstract] [Full Text] [Related]
3. Optimising bioactive glass scaffolds for bone tissue engineering. Jones JR, Ehrenfried LM, Hench LL. Biomaterials; 2006 Mar 01; 27(7):964-73. PubMed ID: 16102812 [Abstract] [Full Text] [Related]
4. Spiral-structured, nanofibrous, 3D scaffolds for bone tissue engineering. Wang J, Valmikinathan CM, Liu W, Laurencin CT, Yu X. J Biomed Mater Res A; 2010 May 01; 93(2):753-62. PubMed ID: 19642211 [Abstract] [Full Text] [Related]
5. Design and characterization of a novel chitosan/nanocrystalline calcium phosphate composite scaffold for bone regeneration. Chesnutt BM, Viano AM, Yuan Y, Yang Y, Guda T, Appleford MR, Ong JL, Haggard WO, Bumgardner JD. J Biomed Mater Res A; 2009 Feb 01; 88(2):491-502. PubMed ID: 18306307 [Abstract] [Full Text] [Related]
6. Poly(lactide-co-glycolide)/hydroxyapatite composite scaffolds for bone tissue engineering. Kim SS, Sun Park M, Jeon O, Yong Choi C, Kim BS. Biomaterials; 2006 Mar 01; 27(8):1399-409. PubMed ID: 16169074 [Abstract] [Full Text] [Related]
7. Polycaprolactone/hydroxyapatite composite scaffolds: preparation, characterization, and in vitro and in vivo biological responses of human primary bone cells. Chuenjitkuntaworn B, Inrung W, Damrongsri D, Mekaapiruk K, Supaphol P, Pavasant P. J Biomed Mater Res A; 2010 Jul 01; 94(1):241-51. PubMed ID: 20166220 [Abstract] [Full Text] [Related]
8. Ectopic bone formation in and soft-tissue response to P(CL/DLLA)/bioactive glass composite scaffolds. Meretoja VV, Tirri T, Malin M, Seppälä JV, Närhi TO. Clin Oral Implants Res; 2014 Feb 01; 25(2):159-64. PubMed ID: 23106633 [Abstract] [Full Text] [Related]
9. Long-term evaluation of porous poly(epsilon-caprolactone-co-L-lactide) as a bone-filling material. Holmbom J, Södergård A, Ekholm E, Märtson M, Kuusilehto A, Saukko P, Penttinen R. J Biomed Mater Res A; 2005 Nov 01; 75(2):308-15. PubMed ID: 16059893 [Abstract] [Full Text] [Related]
10. The influence of hydroxyapatite particles on in vitro degradation behavior of poly epsilon-caprolactone-based composite scaffolds. Guarino V, Taddei P, Di Foggia M, Fagnano C, Ciapetti G, Ambrosio L. Tissue Eng Part A; 2009 Nov 01; 15(11):3655-68. PubMed ID: 19496680 [Abstract] [Full Text] [Related]
11. Effect of self-assembled nanofibrous silk/polycaprolactone layer on the osteoconductivity and mechanical properties of biphasic calcium phosphate scaffolds. Roohani-Esfahani SI, Lu ZF, Li JJ, Ellis-Behnke R, Kaplan DL, Zreiqat H. Acta Biomater; 2012 Jan 01; 8(1):302-12. PubMed ID: 22023750 [Abstract] [Full Text] [Related]
12. Application of an elastic biodegradable poly(L-lactide-co-epsilon-caprolactone) scaffold for cartilage tissue regeneration. Jung Y, Kim SH, You HJ, Kim SH, Kim YH, Min BG. J Biomater Sci Polym Ed; 2008 Jan 01; 19(8):1073-85. PubMed ID: 18644232 [Abstract] [Full Text] [Related]
13. Novel porous hydroxyapatite prepared by combining H2O2 foaming with PU sponge and modified with PLGA and bioactive glass. Huang X, Miao X. J Biomater Appl; 2007 Apr 01; 21(4):351-74. PubMed ID: 16543281 [Abstract] [Full Text] [Related]
14. Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering. Rezwan K, Chen QZ, Blaker JJ, Boccaccini AR. Biomaterials; 2006 Jun 01; 27(18):3413-31. PubMed ID: 16504284 [Abstract] [Full Text] [Related]
15. Fabrication, characterization, and in vitro degradation of composite scaffolds based on PHBV and bioactive glass. Li H, Du R, Chang J. J Biomater Appl; 2005 Oct 01; 20(2):137-55. PubMed ID: 16183674 [Abstract] [Full Text] [Related]
16. Biomimetic polymer/apatite composite scaffolds for mineralized tissue engineering. Zhang R, Ma PX. Macromol Biosci; 2004 Feb 20; 4(2):100-11. PubMed ID: 15468200 [Abstract] [Full Text] [Related]
17. Nanohydroxyapatite/poly(ester urethane) scaffold for bone tissue engineering. Boissard CI, Bourban PE, Tami AE, Alini M, Eglin D. Acta Biomater; 2009 Nov 20; 5(9):3316-27. PubMed ID: 19442765 [Abstract] [Full Text] [Related]
18. Porcine-derived xenogeneic bone/poly(glycolide-co-lactide-co-caprolactone) composite and its affinity with rat OCT-1 osteoblast-like cells. Qu X, Wan Y, Zhang H, Cui W, Bei J, Wang S. Biomaterials; 2006 Jan 20; 27(2):216-25. PubMed ID: 16054684 [Abstract] [Full Text] [Related]
19. Design and characterization of a biodegradable composite scaffold for ligament tissue engineering. Hayami JW, Surrao DC, Waldman SD, Amsden BG. J Biomed Mater Res A; 2010 Mar 15; 92(4):1407-20. PubMed ID: 19353565 [Abstract] [Full Text] [Related]
20. Development of an osteoconductive PCL-PDIPF-hydroxyapatite composite scaffold for bone tissue engineering. Fernandez JM, Molinuevo MS, Cortizo MS, Cortizo AM. J Tissue Eng Regen Med; 2011 Jun 15; 5(6):e126-35. PubMed ID: 21312338 [Abstract] [Full Text] [Related] Page: [Next] [New Search]