These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


207 related items for PubMed ID: 16396642

  • 1. Feasibility and outcome of automated static perimetry in children using continuous light increment perimetry (CLIP) and fast threshold strategy.
    Wabbels BK, Wilscher S.
    Acta Ophthalmol Scand; 2005 Dec; 83(6):664-9. PubMed ID: 16396642
    [Abstract] [Full Text] [Related]

  • 2. Assessment of an effective visual field testing strategy for a normal pediatric population.
    Akar Y, Yilmaz A, Yucel I.
    Ophthalmologica; 2008 Dec; 222(5):329-33. PubMed ID: 18617757
    [Abstract] [Full Text] [Related]

  • 3. Feasibility of saccadic vector optokinetic perimetry: a method of automated static perimetry for children using eye tracking.
    Murray IC, Fleck BW, Brash HM, Macrae ME, Tan LL, Minns RA.
    Ophthalmology; 2009 Oct; 116(10):2017-26. PubMed ID: 19560207
    [Abstract] [Full Text] [Related]

  • 4. The reliability of frequency-doubling perimetry in young children.
    Blumenthal EZ, Haddad A, Horani A, Anteby I.
    Ophthalmology; 2004 Mar; 111(3):435-9. PubMed ID: 15019315
    [Abstract] [Full Text] [Related]

  • 5. Feasibility and outcome of automated kinetic perimetry in children.
    Wilscher S, Wabbels B, Lorenz B.
    Graefes Arch Clin Exp Ophthalmol; 2010 Oct; 248(10):1493-500. PubMed ID: 20232076
    [Abstract] [Full Text] [Related]

  • 6. Fundus perimetry with the Micro Perimeter 1 in normal individuals: comparison with conventional threshold perimetry.
    Springer C, Bültmann S, Völcker HE, Rohrschneider K.
    Ophthalmology; 2005 May; 112(5):848-54. PubMed ID: 15878065
    [Abstract] [Full Text] [Related]

  • 7. [Automated static perimetry in the child: methodologic and practical problems].
    Tschopp C, Safran AB, Laffi JL, Mermoud C, Bullinger A, Viviani P.
    Klin Monbl Augenheilkd; 1995 May; 206(5):416-9. PubMed ID: 7609403
    [Abstract] [Full Text] [Related]

  • 8. The reliability of frequency-doubling technology (FDT) perimetry in a pediatric population.
    Becker K, Semes L.
    Optometry; 2003 Mar; 74(3):173-9. PubMed ID: 12645850
    [Abstract] [Full Text] [Related]

  • 9. Swedish interactive thresholding algorithm fast for following visual fields in prepubertal idiopathic intracranial hypertension.
    Stiebel-Kalish H, Lusky M, Yassur Y, Kalish Y, Shuper A, Erlich R, Lubman S, Snir M.
    Ophthalmology; 2004 Sep; 111(9):1673-5. PubMed ID: 15350321
    [Abstract] [Full Text] [Related]

  • 10. Frequency doubling technology perimetry in normal children.
    Quinn LM, Gardiner SK, Wheeler DT, Newkirk M, Johnson CA.
    Am J Ophthalmol; 2006 Dec; 142(6):983-9. PubMed ID: 17046702
    [Abstract] [Full Text] [Related]

  • 11. Comparison of tendency-oriented perimetry and dynamic strategy in octopus perimetry as a screening tool in a clinical setting: a prospective study.
    Scherrer M, Fleischhauer JC, Helbig H, Johann Auf der Heide K, Sutter FK.
    Klin Monbl Augenheilkd; 2007 Apr; 224(4):252-4. PubMed ID: 17458786
    [Abstract] [Full Text] [Related]

  • 12. Rarebit and frequency-doubling technology perimetry in children and young adults.
    Martin L.
    Acta Ophthalmol Scand; 2005 Dec; 83(6):670-7. PubMed ID: 16396643
    [Abstract] [Full Text] [Related]

  • 13. Diagnostic sensitivity of fast blue-yellow and standard automated perimetry in early glaucoma: a comparison between different test programs.
    Bengtsson B, Heijl A.
    Ophthalmology; 2006 Jul; 113(7):1092-7. PubMed ID: 16815399
    [Abstract] [Full Text] [Related]

  • 14. The feasibility of short automated static perimetry in children.
    Morales J, Brown SM.
    Ophthalmology; 2001 Jan; 108(1):157-62. PubMed ID: 11150282
    [Abstract] [Full Text] [Related]

  • 15. The different effects of aging on normal sensitivity in flicker and light-sense perimetry.
    Lachenmayr BJ, Kojetinsky S, Ostermaier N, Angstwurm K, Vivell PM, Schaumberger M.
    Invest Ophthalmol Vis Sci; 1994 May; 35(6):2741-8. PubMed ID: 8188467
    [Abstract] [Full Text] [Related]

  • 16. Combining perimetric suprathreshold and threshold procedures to reduce measurement variability in areas of visual field loss.
    McKendrick AM, Turpin A.
    Optom Vis Sci; 2005 Jan; 82(1):43-51. PubMed ID: 15630403
    [Abstract] [Full Text] [Related]

  • 17. A clinical comparison of visual field testing between Goldmann-type manual perimetry and the Marco MT-336 automated perimeter.
    Jennings BJ, Drake SA.
    J Am Optom Assoc; 1991 Dec; 62(12):914-22. PubMed ID: 1814984
    [Abstract] [Full Text] [Related]

  • 18. Repeatability of automated perimetry: a comparison between standard automated perimetry with stimulus size III and V, matrix, and motion perimetry.
    Wall M, Woodward KR, Doyle CK, Artes PH.
    Invest Ophthalmol Vis Sci; 2009 Feb; 50(2):974-9. PubMed ID: 18952921
    [Abstract] [Full Text] [Related]

  • 19. [Computer perimetry--rapid TOP (tendency oriented perimetry) and normal threshold methods in clinical practice--comparison of results].
    Kratochvilová P.
    Cesk Slov Oftalmol; 2002 May; 58(3):187-93. PubMed ID: 12087665
    [Abstract] [Full Text] [Related]

  • 20. Performance of frequency-doubling technology perimetry in a population-based prevalence survey of glaucoma: the Tajimi study.
    Iwase A, Tomidokoro A, Araie M, Shirato S, Shimizu H, Kitazawa Y, Tajimi Study Group.
    Ophthalmology; 2007 Jan; 114(1):27-32. PubMed ID: 17070580
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 11.