These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
283 related items for PubMed ID: 16397230
1. Interleukin-17 receptor-like gene is a novel antiapoptotic gene highly expressed in androgen-independent prostate cancer. You Z, Shi XB, DuRaine G, Haudenschild D, Tepper CG, Lo SH, Gandour-Edwards R, de Vere White RW, Reddi AH. Cancer Res; 2006 Jan 01; 66(1):175-83. PubMed ID: 16397230 [Abstract] [Full Text] [Related]
2. Increased Hsp27 after androgen ablation facilitates androgen-independent progression in prostate cancer via signal transducers and activators of transcription 3-mediated suppression of apoptosis. Rocchi P, Beraldi E, Ettinger S, Fazli L, Vessella RL, Nelson C, Gleave M. Cancer Res; 2005 Dec 01; 65(23):11083-93. PubMed ID: 16322258 [Abstract] [Full Text] [Related]
3. A novel dietary triterpene Lupeol induces fas-mediated apoptotic death of androgen-sensitive prostate cancer cells and inhibits tumor growth in a xenograft model. Saleem M, Kweon MH, Yun JM, Adhami VM, Khan N, Syed DN, Mukhtar H. Cancer Res; 2005 Dec 01; 65(23):11203-13. PubMed ID: 16322271 [Abstract] [Full Text] [Related]
4. Inhibition of interleukin-6 with CNTO328, an anti-interleukin-6 monoclonal antibody, inhibits conversion of androgen-dependent prostate cancer to an androgen-independent phenotype in orchiectomized mice. Wallner L, Dai J, Escara-Wilke J, Zhang J, Yao Z, Lu Y, Trikha M, Nemeth JA, Zaki MH, Keller ET. Cancer Res; 2006 Mar 15; 66(6):3087-95. PubMed ID: 16540658 [Abstract] [Full Text] [Related]
5. Development of an androgen-deprivation induced and androgen suppressed human prostate cancer cell line. Lee SO, Dutt SS, Nadiminty N, Pinder E, Liao H, Gao AC. Prostate; 2007 Sep 01; 67(12):1293-300. PubMed ID: 17626246 [Abstract] [Full Text] [Related]
6. Interruption of nuclear factor kappaB signaling by the androgen receptor facilitates 12-O-tetradecanoylphorbolacetate-induced apoptosis in androgen-sensitive prostate cancer LNCaP cells. Altuwaijri S, Lin HK, Chuang KH, Lin WJ, Yeh S, Hanchett LA, Rahman MM, Kang HY, Tsai MY, Zhang Y, Yang L, Chang C. Cancer Res; 2003 Nov 01; 63(21):7106-12. PubMed ID: 14612503 [Abstract] [Full Text] [Related]
7. ERRgamma suppresses cell proliferation and tumor growth of androgen-sensitive and androgen-insensitive prostate cancer cells and its implication as a therapeutic target for prostate cancer. Yu S, Wang X, Ng CF, Chen S, Chan FL. Cancer Res; 2007 May 15; 67(10):4904-14. PubMed ID: 17510420 [Abstract] [Full Text] [Related]
8. Androgen deprivation induces selective outgrowth of aggressive hormone-refractory prostate cancer clones expressing distinct cellular and molecular properties not present in parental androgen-dependent cancer cells. Tso CL, McBride WH, Sun J, Patel B, Tsui KH, Paik SH, Gitlitz B, Caliliw R, van Ophoven A, Wu L, deKernion J, Belldegrun A. Cancer J; 2000 May 15; 6(4):220-33. PubMed ID: 11038142 [Abstract] [Full Text] [Related]
9. Adenovirus-mediated tissue-targeted expression of a caspase-9-based artificial death switch for the treatment of prostate cancer. Xie X, Zhao X, Liu Y, Zhang J, Matusik RJ, Slawin KM, Spencer DM. Cancer Res; 2001 Sep 15; 61(18):6795-804. PubMed ID: 11559553 [Abstract] [Full Text] [Related]
10. Heat shock protein 27 increases after androgen ablation and plays a cytoprotective role in hormone-refractory prostate cancer. Rocchi P, So A, Kojima S, Signaevsky M, Beraldi E, Fazli L, Hurtado-Coll A, Yamanaka K, Gleave M. Cancer Res; 2004 Sep 15; 64(18):6595-602. PubMed ID: 15374973 [Abstract] [Full Text] [Related]
11. Suppression of LNCaP prostate cancer xenograft tumors by a prostate-specific protein tyrosine phosphatase, prostatic acid phosphatase. Igawa T, Lin FF, Rao P, Lin MF. Prostate; 2003 Jun 01; 55(4):247-58. PubMed ID: 12712404 [Abstract] [Full Text] [Related]
12. Evolution of the androgen receptor pathway during progression of prostate cancer. Hendriksen PJ, Dits NF, Kokame K, Veldhoven A, van Weerden WM, Bangma CH, Trapman J, Jenster G. Cancer Res; 2006 May 15; 66(10):5012-20. PubMed ID: 16707422 [Abstract] [Full Text] [Related]
13. Antiapoptotic activity of autocrine interleukin-22 and therapeutic effects of interleukin-22-small interfering RNA on human lung cancer xenografts. Zhang W, Chen Y, Wei H, Zheng C, Sun R, Zhang J, Tian Z. Clin Cancer Res; 2008 Oct 15; 14(20):6432-9. PubMed ID: 18927282 [Abstract] [Full Text] [Related]
14. In vivo progression of LAPC-9 and LNCaP prostate cancer models to androgen independence is associated with increased expression of insulin-like growth factor I (IGF-I) and IGF-I receptor (IGF-IR). Nickerson T, Chang F, Lorimer D, Smeekens SP, Sawyers CL, Pollak M. Cancer Res; 2001 Aug 15; 61(16):6276-80. PubMed ID: 11507082 [Abstract] [Full Text] [Related]
15. Acquisition of chemoresistant phenotype by overexpression of the antiapoptotic gene testosterone-repressed prostate message-2 in prostate cancer xenograft models. Miyake H, Nelson C, Rennie PS, Gleave ME. Cancer Res; 2000 May 01; 60(9):2547-54. PubMed ID: 10811138 [Abstract] [Full Text] [Related]
16. Overexpression of Fn14 promotes androgen-independent prostate cancer progression through MMP-9 and correlates with poor treatment outcome. Huang M, Narita S, Tsuchiya N, Ma Z, Numakura K, Obara T, Tsuruta H, Saito M, Inoue T, Horikawa Y, Satoh S, Habuchi T. Carcinogenesis; 2011 Nov 01; 32(11):1589-96. PubMed ID: 21828059 [Abstract] [Full Text] [Related]
17. Dysregulated expression of androgen-responsive and nonresponsive genes in the androgen-independent prostate cancer xenograft model CWR22-R1. Amler LC, Agus DB, LeDuc C, Sapinoso ML, Fox WD, Kern S, Lee D, Wang V, Leysens M, Higgins B, Martin J, Gerald W, Dracopoli N, Cordon-Cardo C, Scher HI, Hampton GM. Cancer Res; 2000 Nov 01; 60(21):6134-41. PubMed ID: 11085537 [Abstract] [Full Text] [Related]
18. Small interfering RNA-directed targeting of Toll-like receptor 4 inhibits human prostate cancer cell invasion, survival, and tumorigenicity. Hua D, Liu MY, Cheng ZD, Qin XJ, Zhang HM, Chen Y, Qin GJ, Liang G, Li JN, Han XF, Liu DX. Mol Immunol; 2009 Sep 01; 46(15):2876-84. PubMed ID: 19643479 [Abstract] [Full Text] [Related]
19. TMEFF2 is an androgen-regulated gene exhibiting antiproliferative effects in prostate cancer cells. Gery S, Sawyers CL, Agus DB, Said JW, Koeffler HP. Oncogene; 2002 Jul 18; 21(31):4739-46. PubMed ID: 12101412 [Abstract] [Full Text] [Related]
20. Low-dose 12-O-tetradecanoylphorbol-13-acetate enhances tumor necrosis factor related apoptosis-inducing ligand induced apoptosis in prostate cancer cells. Zhang X, Li W, Olumi AF. Clin Cancer Res; 2007 Dec 01; 13(23):7181-90. PubMed ID: 18056199 [Abstract] [Full Text] [Related] Page: [Next] [New Search]