These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


340 related items for PubMed ID: 16401073

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2. Spectroscopic characterization of the [Fe(His)(4)(Cys)] site in 2Fe-superoxide reductase from Desulfovibrio vulgaris.
    Clay MD, Emerson JP, Coulter ED, Kurtz DM, Johnson MK.
    J Biol Inorg Chem; 2003 Jul; 8(6):671-82. PubMed ID: 12764688
    [Abstract] [Full Text] [Related]

  • 3. Spectroscopic studies of Pyrococcus furiosus superoxide reductase: implications for active-site structures and the catalytic mechanism.
    Clay MD, Jenney FE, Hagedoorn PL, George GN, Adams MW, Johnson MK.
    J Am Chem Soc; 2002 Feb 06; 124(5):788-805. PubMed ID: 11817955
    [Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8. Kinetics and mechanism of superoxide reduction by two-iron superoxide reductase from Desulfovibrio vulgaris.
    Emerson JP, Coulter ED, Cabelli DE, Phillips RS, Kurtz DM.
    Biochemistry; 2002 Apr 02; 41(13):4348-57. PubMed ID: 11914081
    [Abstract] [Full Text] [Related]

  • 9. Mössbauer characterization of an unusual high-spin side-on peroxo-Fe3+ species in the active site of superoxide reductase from Desulfoarculus Baarsii. Density functional calculations on related models.
    Horner O, Mouesca JM, Oddou JL, Jeandey C, Nivière V, Mattioli TA, Mathé C, Fontecave M, Maldivi P, Bonville P, Halfen JA, Latour JM.
    Biochemistry; 2004 Jul 13; 43(27):8815-25. PubMed ID: 15236590
    [Abstract] [Full Text] [Related]

  • 10. Superoxide reduction by Archaeoglobus fulgidus desulfoferrodoxin: comparison with neelaredoxin.
    Rodrigues JV, Saraiva LM, Abreu IA, Teixeira M, Cabelli DE.
    J Biol Inorg Chem; 2007 Feb 13; 12(2):248-56. PubMed ID: 17066300
    [Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12. Azide- and cyanide-binding to the Escherichia coli bd-type ubiquinol oxidase studied by visible absorption, EPR and FTIR spectroscopies.
    Tsubaki M, Mogi T, Hori H.
    J Biochem; 1999 Sep 13; 126(3):510-9. PubMed ID: 10467166
    [Abstract] [Full Text] [Related]

  • 13. Sulfur K-edge X-ray absorption spectroscopy and density functional theory calculations on superoxide reductase: role of the axial thiolate in reactivity.
    Dey A, Jenney FE, Adams MW, Johnson MK, Hodgson KO, Hedman B, Solomon EI.
    J Am Chem Soc; 2007 Oct 17; 129(41):12418-31. PubMed ID: 17887751
    [Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16. Resonance Raman spectroscopic study of nitrophorin 1, a nitric oxide-binding heme protein from Rhodnius prolixus, and its nitrosyl and cyano adducts.
    Maes EM, Walker FA, Montfort WR, Czernuszewicz RS.
    J Am Chem Soc; 2001 Nov 28; 123(47):11664-72. PubMed ID: 11716723
    [Abstract] [Full Text] [Related]

  • 17. Density functional theory applied to a difference in pathways taken by the enzymes cytochrome P450 and superoxide reductase: spin States of ferric hydroperoxo intermediates and hydrogen bonds from water.
    Surawatanawong P, Tye JW, Hall MB.
    Inorg Chem; 2010 Jan 04; 49(1):188-98. PubMed ID: 19968237
    [Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 17.