These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
565 related items for PubMed ID: 16404951
1. Ethylene sensing and gene activation in Botrytis cinerea: a missing link in ethylene regulation of fungus-plant interactions? Chagué V, Danit LV, Siewers V, Schulze-Gronover C, Tudzynski P, Tudzynski B, Sharon A. Mol Plant Microbe Interact; 2006 Jan; 19(1):33-42. PubMed ID: 16404951 [Abstract] [Full Text] [Related]
2. Expression profiling and mutant analysis reveals complex regulatory networks involved in Arabidopsis response to Botrytis infection. AbuQamar S, Chen X, Dhawan R, Bluhm B, Salmeron J, Lam S, Dietrich RA, Mengiste T. Plant J; 2006 Oct; 48(1):28-44. PubMed ID: 16925600 [Abstract] [Full Text] [Related]
3. Expression profiling of Botrytis cinerea genes identifies three patterns of up-regulation in planta and an FKBP12 protein affecting pathogenicity. Gioti A, Simon A, Le Pêcheur P, Giraud C, Pradier JM, Viaud M, Levis C. J Mol Biol; 2006 Apr 28; 358(2):372-86. PubMed ID: 16497329 [Abstract] [Full Text] [Related]
4. The BOS loci of Arabidopsis are required for resistance to Botrytis cinerea infection. Veronese P, Chen X, Bluhm B, Salmeron J, Dietrich R, Mengiste T. Plant J; 2004 Nov 28; 40(4):558-74. PubMed ID: 15500471 [Abstract] [Full Text] [Related]
5. Involvement of a putative response regulator Brrg-1 in the regulation of sporulation, sensitivity to fungicides, and osmotic stress in Botrytis cinerea. Yan L, Yang Q, Jiang J, Michailides TJ, Ma Z. Appl Microbiol Biotechnol; 2011 Apr 28; 90(1):215-26. PubMed ID: 21161211 [Abstract] [Full Text] [Related]
6. Identification of Botrytis cinerea genes up-regulated during infection and controlled by the Galpha subunit BCG1 using suppression subtractive hybridization (SSH). Schulze Gronover C, Schorn C, Tudzynski B. Mol Plant Microbe Interact; 2004 May 28; 17(5):537-46. PubMed ID: 15141958 [Abstract] [Full Text] [Related]
7. Does botrytis cinerea Ignore H(2)O(2)-induced oxidative stress during infection? Characterization of botrytis activator protein 1. Temme N, Tudzynski P. Mol Plant Microbe Interact; 2009 Aug 28; 22(8):987-98. PubMed ID: 19589074 [Abstract] [Full Text] [Related]
8. Salicylic acid accumulation under O3 exposure is regulated by ethylene in tobacco plants. Ogawa D, Nakajima N, Sano T, Tamaoki M, Aono M, Kubo A, Kanna M, Ioki M, Kamada H, Saji H. Plant Cell Physiol; 2005 Jul 28; 46(7):1062-72. PubMed ID: 15870097 [Abstract] [Full Text] [Related]
9. Disruption of Botrytis cinerea pectin methylesterase gene Bcpme1 reduces virulence on several host plants. Valette-Collet O, Cimerman A, Reignault P, Levis C, Boccara M. Mol Plant Microbe Interact; 2003 Apr 28; 16(4):360-7. PubMed ID: 12744465 [Abstract] [Full Text] [Related]
10. The nature of tobacco resistance against Botrytis cinerea depends on the infection structures of the pathogen. El Oirdi M, Trapani A, Bouarab K. Environ Microbiol; 2010 Jan 28; 12(1):239-53. PubMed ID: 19799622 [Abstract] [Full Text] [Related]
11. The Arabidopsis ATAF1, a NAC transcription factor, is a negative regulator of defense responses against necrotrophic fungal and bacterial pathogens. Wang X, Basnayake BM, Zhang H, Li G, Li W, Virk N, Mengiste T, Song F. Mol Plant Microbe Interact; 2009 Oct 28; 22(10):1227-38. PubMed ID: 19737096 [Abstract] [Full Text] [Related]
12. A polygalacturonase-inhibiting protein from grapevine reduces the symptoms of the endopolygalacturonase BcPG2 from Botrytis cinerea in Nicotiana benthamiana leaves without any evidence for in vitro interaction. Joubert DA, Kars I, Wagemakers L, Bergmann C, Kemp G, Vivier MA, van Kan JA. Mol Plant Microbe Interact; 2007 Apr 28; 20(4):392-402. PubMed ID: 17427809 [Abstract] [Full Text] [Related]
14. Botrytis cinerea virulence factors: new insights into a necrotrophic and polyphageous pathogen. Choquer M, Fournier E, Kunz C, Levis C, Pradier JM, Simon A, Viaud M. FEMS Microbiol Lett; 2007 Dec 28; 277(1):1-10. PubMed ID: 17986079 [Abstract] [Full Text] [Related]
15. Ectopic expression of MgSM1, a Cerato-platanin family protein from Magnaporthe grisea, confers broad-spectrum disease resistance in Arabidopsis. Yang Y, Zhang H, Li G, Li W, Wang X, Song F. Plant Biotechnol J; 2009 Oct 28; 7(8):763-77. PubMed ID: 19754836 [Abstract] [Full Text] [Related]
16. The Botrytis cinerea Reg1 protein, a putative transcriptional regulator, is required for pathogenicity, conidiogenesis, and the production of secondary metabolites. Michielse CB, Becker M, Heller J, Moraga J, Collado IG, Tudzynski P. Mol Plant Microbe Interact; 2011 Sep 28; 24(9):1074-85. PubMed ID: 21635139 [Abstract] [Full Text] [Related]
17. Ethylene signaling mediates a maize defense response to insect herbivory. Harfouche AL, Shivaji R, Stocker R, Williams PW, Luthe DS. Mol Plant Microbe Interact; 2006 Feb 28; 19(2):189-99. PubMed ID: 16529381 [Abstract] [Full Text] [Related]
18. Enhanced defense responses in Arabidopsis induced by the cell wall protein fractions from Pythium oligandrum require SGT1, RAR1, NPR1 and JAR1. Kawamura Y, Takenaka S, Hase S, Kubota M, Ichinose Y, Kanayama Y, Nakaho K, Klessig DF, Takahashi H. Plant Cell Physiol; 2009 May 28; 50(5):924-34. PubMed ID: 19304739 [Abstract] [Full Text] [Related]
19. Disruption of the Bcchs3a chitin synthase gene in Botrytis cinerea is responsible for altered adhesion and overstimulation of host plant immunity. Arbelet D, Malfatti P, Simond-Côte E, Fontaine T, Desquilbet L, Expert D, Kunz C, Soulié MC. Mol Plant Microbe Interact; 2010 Oct 28; 23(10):1324-34. PubMed ID: 20672878 [Abstract] [Full Text] [Related]
20. Mycoparasitism of Acremonium strictum BCP on Botrytis cinerea, the gray mold pathogen. Choi GJ, Kim JC, Jang KS, Cho KY, Kim HT. J Microbiol Biotechnol; 2008 Jan 28; 18(1):167-70. PubMed ID: 18239435 [Abstract] [Full Text] [Related] Page: [Next] [New Search]