These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


957 related items for PubMed ID: 16407422

  • 1. Changes in cortically related intermuscular coherence accompanying improvements in locomotor skills in incomplete spinal cord injury.
    Norton JA, Gorassini MA.
    J Neurophysiol; 2006 Apr; 95(4):2580-9. PubMed ID: 16407422
    [Abstract] [Full Text] [Related]

  • 2. Increases in corticospinal tract function by treadmill training after incomplete spinal cord injury.
    Thomas SL, Gorassini MA.
    J Neurophysiol; 2005 Oct; 94(4):2844-55. PubMed ID: 16000519
    [Abstract] [Full Text] [Related]

  • 3. Corticospinal inhibition of transmission in propriospinal-like neurones during human walking.
    Iglesias C, Nielsen JB, Marchand-Pauvert V.
    Eur J Neurosci; 2008 Oct; 28(7):1351-61. PubMed ID: 18973562
    [Abstract] [Full Text] [Related]

  • 4. Reduction of common synaptic drive to ankle dorsiflexor motoneurons during walking in patients with spinal cord lesion.
    Hansen NL, Conway BA, Halliday DM, Hansen S, Pyndt HS, Biering-Sørensen F, Nielsen JB.
    J Neurophysiol; 2005 Aug; 94(2):934-42. PubMed ID: 15800077
    [Abstract] [Full Text] [Related]

  • 5. Facilitation of corticospinal excitability in the tibialis anterior muscle during robot-assisted passive stepping in humans.
    Kamibayashi K, Nakajima T, Takahashi M, Akai M, Nakazawa K.
    Eur J Neurosci; 2009 Jul; 30(1):100-9. PubMed ID: 19523098
    [Abstract] [Full Text] [Related]

  • 6. Central cord syndrome of cervical spinal cord injury: widespread changes in muscle recruitment studied by voluntary contractions and transcranial magnetic stimulation.
    Alexeeva N, Broton JG, Suys S, Calancie B.
    Exp Neurol; 1997 Dec; 148(2):399-406. PubMed ID: 9417819
    [Abstract] [Full Text] [Related]

  • 7. Impaired transmission in the corticospinal tract and gait disability in spinal cord injured persons.
    Barthélemy D, Willerslev-Olsen M, Lundell H, Conway BA, Knudsen H, Biering-Sørensen F, Nielsen JB.
    J Neurophysiol; 2010 Aug; 104(2):1167-76. PubMed ID: 20554839
    [Abstract] [Full Text] [Related]

  • 8. Afferent regulation of leg motor cortex excitability after incomplete spinal cord injury.
    Roy FD, Yang JF, Gorassini MA.
    J Neurophysiol; 2010 Apr; 103(4):2222-33. PubMed ID: 20181733
    [Abstract] [Full Text] [Related]

  • 9. On the potential role of the corticospinal tract in the control and progressive adaptation of the soleus h-reflex during backward walking.
    Ung RV, Imbeault MA, Ethier C, Brizzi L, Capaday C.
    J Neurophysiol; 2005 Aug; 94(2):1133-42. PubMed ID: 15829598
    [Abstract] [Full Text] [Related]

  • 10. Electromyographic identification of spinal oscillator patterns and recouplings in a patient with incomplete spinal cord lesion: oscillator formation training as a method to improve motor activities.
    Schalow G, Blanc Y, Jeltsch W, Zäch GA.
    Gen Physiol Biophys; 1996 Aug; 15 Suppl 1():121-220. PubMed ID: 8934200
    [Abstract] [Full Text] [Related]

  • 11. Modulation of locomotor-like EMG activity in subjects with complete and incomplete spinal cord injury.
    Dobkin BH, Harkema S, Requejo P, Edgerton VR.
    J Neurol Rehabil; 1995 Aug; 9(4):183-90. PubMed ID: 11539274
    [Abstract] [Full Text] [Related]

  • 12. Abnormal cortex-muscle interactions in subjects with X-linked Kallmann's syndrome and mirror movements.
    Farmer SF, Harrison LM, Mayston MJ, Parekh A, James LM, Stephens JA.
    Brain; 2004 Feb; 127(Pt 2):385-97. PubMed ID: 14662517
    [Abstract] [Full Text] [Related]

  • 13. Effects of low-frequency whole-body vibration on motor-evoked potentials in healthy men.
    Mileva KN, Bowtell JL, Kossev AR.
    Exp Physiol; 2009 Jan; 94(1):103-16. PubMed ID: 18658234
    [Abstract] [Full Text] [Related]

  • 14. Distribution and latency of muscle responses to transcranial magnetic stimulation of motor cortex after spinal cord injury in humans.
    Calancie B, Alexeeva N, Broton JG, Suys S, Hall A, Klose KJ.
    J Neurotrauma; 1999 Jan; 16(1):49-67. PubMed ID: 9989466
    [Abstract] [Full Text] [Related]

  • 15. Task-specific depression of the soleus H-reflex after cocontraction training of antagonistic ankle muscles.
    Perez MA, Lundbye-Jensen J, Nielsen JB.
    J Neurophysiol; 2007 Dec; 98(6):3677-87. PubMed ID: 17942616
    [Abstract] [Full Text] [Related]

  • 16. Role of sustained excitability of the leg motor cortex after transcranial magnetic stimulation in associative plasticity.
    Roy FD, Norton JA, Gorassini MA.
    J Neurophysiol; 2007 Aug; 98(2):657-67. PubMed ID: 17537908
    [Abstract] [Full Text] [Related]

  • 17. Changes in spinal reflex and locomotor activity after a complete spinal cord injury: a common mechanism?
    Dietz V, Grillner S, Trepp A, Hubli M, Bolliger M.
    Brain; 2009 Aug; 132(Pt 8):2196-205. PubMed ID: 19460795
    [Abstract] [Full Text] [Related]

  • 18. Corticospinal contributions to lower limb muscle activity during cycling in humans.
    Sidhu SK, Hoffman BW, Cresswell AG, Carroll TJ.
    J Neurophysiol; 2012 Jan; 107(1):306-14. PubMed ID: 22013236
    [Abstract] [Full Text] [Related]

  • 19. The effect of transcranial magnetic stimulation and peripheral nerve stimulation on corticomuscular coherence in humans.
    Hansen NL, Nielsen JB.
    J Physiol; 2004 Nov 15; 561(Pt 1):295-306. PubMed ID: 15358809
    [Abstract] [Full Text] [Related]

  • 20. Short-interval intracortical inhibition with incomplete spinal cord injury.
    Roy FD, Zewdie ET, Gorassini MA.
    Clin Neurophysiol; 2011 Jul 15; 122(7):1387-95. PubMed ID: 21295518
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 48.