These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
139 related items for PubMed ID: 1640881
1. A three-dimensional junction-pore-matrix model for capillary permeability. Weinbaum S, Tsay R, Curry FE. Microvasc Res; 1992 Jul; 44(1):85-111. PubMed ID: 1640881 [Abstract] [Full Text] [Related]
2. A junction-orifice-fiber entrance layer model for capillary permeability: application to frog mesenteric capillaries. Fu BM, Weinbaum S, Tsay RY, Curry FE. J Biomech Eng; 1994 Nov; 116(4):502-13. PubMed ID: 7869727 [Abstract] [Full Text] [Related]
4. A dual-pathway ultrastructural model for the tight junction of rat proximal tubule epithelium. Guo P, Weinstein AM, Weinbaum S. Am J Physiol Renal Physiol; 2003 Aug; 285(2):F241-57. PubMed ID: 12670832 [Abstract] [Full Text] [Related]
5. A model for interpreting the tracer labeling of interendothelial clefts. Fu B, Curry FR, Adamson RH, Weinbaum S. Ann Biomed Eng; 1997 Aug; 25(2):375-97. PubMed ID: 9084841 [Abstract] [Full Text] [Related]
7. A model for flow through discontinuities in the tight junction of the endothelial intercellular cleft. Phillips CG, Parker KH, Wang W. Bull Math Biol; 1994 Jul; 56(4):723-41. PubMed ID: 8054892 [Abstract] [Full Text] [Related]
8. A diffusion wake model for tracer ultrastructure-permeability studies in microvessels. Fu BM, Curry FE, Weinbaum S. Am J Physiol; 1995 Dec; 269(6 Pt 2):H2124-40. PubMed ID: 8594924 [Abstract] [Full Text] [Related]
10. On the time-dependent diffusion of macromolecules through transient open junctions and their subendothelial spread. I. Short-time model for cleft exit region. Weinbaum S, Ganatos P, Pfeffer R, Wen GB, Lee M, Chien S. J Theor Biol; 1988 Nov 08; 135(1):1-30. PubMed ID: 3256708 [Abstract] [Full Text] [Related]
11. On the time dependent diffusion of macromolecules through transient open junctions and their subendothelial spread. 2. Long time model for interaction between leakage sites. Wen GB, Weinbaum S, Ganatos P, Pfeffer R, Chien S. J Theor Biol; 1988 Nov 21; 135(2):219-53. PubMed ID: 3267768 [Abstract] [Full Text] [Related]
12. Mechanism of osmotic flow in a periodic fiber array. Zhang X, Curry FR, Weinbaum S. Am J Physiol Heart Circ Physiol; 2006 Feb 21; 290(2):H844-52. PubMed ID: 16183730 [Abstract] [Full Text] [Related]
14. Physiological studies of macromolecular transport across capillary walls. Studies on continuous capillaries in rat skeletal muscle. Haraldsson B. Acta Physiol Scand Suppl; 1986 Feb 21; 553():1-40. PubMed ID: 3466511 [Abstract] [Full Text] [Related]
15. A model for the excitation of osteocytes by mechanical loading-induced bone fluid shear stresses. Weinbaum S, Cowin SC, Zeng Y. J Biomech; 1994 Mar 21; 27(3):339-60. PubMed ID: 8051194 [Abstract] [Full Text] [Related]
16. Microvascular solute and water transport. Curry FR. Microcirculation; 2005 Mar 21; 12(1):17-31. PubMed ID: 15804971 [Abstract] [Full Text] [Related]
17. Ultrastructural model for size selectivity in glomerular filtration. Edwards A, Daniels BS, Deen WM. Am J Physiol; 1999 Jun 21; 276(6):F892-902. PubMed ID: 10362778 [Abstract] [Full Text] [Related]
18. Pathways through the intercellular clefts of frog mesenteric capillaries. Adamson RH, Michel CC. J Physiol; 1993 Jul 21; 466():303-27. PubMed ID: 8410696 [Abstract] [Full Text] [Related]
19. The three-dimensional organization of tight junctions in a capillary endothelium revealed by serial-section electron microscopy. Bundgaard M. J Ultrastruct Res; 1984 Jul 21; 88(1):1-17. PubMed ID: 6545375 [Abstract] [Full Text] [Related]