These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


236 related items for PubMed ID: 1641026

  • 21. [Regionalization of the expression of tenascin as a response to the inducers of mesoderm].
    Umbhauer M, Riou JF, Boucaut JC.
    C R Seances Soc Biol Fil; 1993; 187(3):341-55. PubMed ID: 7517335
    [Abstract] [Full Text] [Related]

  • 22. Tbx6, a mouse T-Box gene implicated in paraxial mesoderm formation at gastrulation.
    Chapman DL, Agulnik I, Hancock S, Silver LM, Papaioannou VE.
    Dev Biol; 1996 Dec 15; 180(2):534-42. PubMed ID: 8954725
    [Abstract] [Full Text] [Related]

  • 23. Expression pattern of an axolotl floor plate-specific fork head gene reflects early developmental differences between frogs and salamanders.
    Whiteley M, Mathers PH, Jamrich M.
    Dev Genet; 1997 Dec 15; 20(2):145-51. PubMed ID: 9144925
    [Abstract] [Full Text] [Related]

  • 24. Differential regulation of chordin expression domains in mutant zebrafish.
    Miller-Bertoglio VE, Fisher S, Sánchez A, Mullins MC, Halpern ME.
    Dev Biol; 1997 Dec 15; 192(2):537-50. PubMed ID: 9441687
    [Abstract] [Full Text] [Related]

  • 25. The role of Brachyury (T) during gastrulation movements in the sea urchin Lytechinus variegatus.
    Gross JM, McClay DR.
    Dev Biol; 2001 Nov 01; 239(1):132-47. PubMed ID: 11784024
    [Abstract] [Full Text] [Related]

  • 26. Mesoderm formation in response to Brachyury requires FGF signalling.
    Schulte-Merker S, Smith JC.
    Curr Biol; 1995 Jan 01; 5(1):62-7. PubMed ID: 7535172
    [Abstract] [Full Text] [Related]

  • 27. A screen for targets of the Xenopus T-box gene Xbra.
    Saka Y, Tada M, Smith JC.
    Mech Dev; 2000 May 01; 93(1-2):27-39. PubMed ID: 10781937
    [Abstract] [Full Text] [Related]

  • 28. Inhibition of Xbra transcription activation causes defects in mesodermal patterning and reveals autoregulation of Xbra in dorsal mesoderm.
    Conlon FL, Sedgwick SG, Weston KM, Smith JC.
    Development; 1996 Aug 01; 122(8):2427-35. PubMed ID: 8756288
    [Abstract] [Full Text] [Related]

  • 29. VegT, eFGF and Xbra cause overall posteriorization while Xwnt8 causes eye-level restricted posteriorization in synergy with chordin in early Xenopus development.
    Fujii H, Sakai M, Nishimatsu S, Nohno T, Mochii M, Orii H, Watanabe K.
    Dev Growth Differ; 2008 Mar 01; 50(3):169-80. PubMed ID: 18318733
    [Abstract] [Full Text] [Related]

  • 30. Analysis of competence and of Brachyury autoinduction by use of hormone-inducible Xbra.
    Tada M, O'Reilly MA, Smith JC.
    Development; 1997 Jun 01; 124(11):2225-34. PubMed ID: 9187148
    [Abstract] [Full Text] [Related]

  • 31. Antagonistic role of XESR1 and XESR5 in mesoderm formation in Xenopus laevis.
    Kinoshita T, Haruta Y, Sakamoto C, Imaoka S.
    Int J Dev Biol; 2011 Jun 01; 55(1):25-31. PubMed ID: 21425079
    [Abstract] [Full Text] [Related]

  • 32. eFGF regulates Xbra expression during Xenopus gastrulation.
    Isaacs HV, Pownall ME, Slack JM.
    EMBO J; 1994 Oct 03; 13(19):4469-81. PubMed ID: 7925289
    [Abstract] [Full Text] [Related]

  • 33. Expression of a Xenopus homolog of Brachyury (T) is an immediate-early response to mesoderm induction.
    Smith JC, Price BM, Green JB, Weigel D, Herrmann BG.
    Cell; 1991 Oct 04; 67(1):79-87. PubMed ID: 1717160
    [Abstract] [Full Text] [Related]

  • 34. The ALK-2 and ALK-4 activin receptors transduce distinct mesoderm-inducing signals during early Xenopus development but do not co-operate to establish thresholds.
    Armes NA, Smith JC.
    Development; 1997 Oct 04; 124(19):3797-804. PubMed ID: 9367435
    [Abstract] [Full Text] [Related]

  • 35. The RNA-binding protein XSeb4R regulates maternal Sox3 at the posttranscriptional level during maternal-zygotic transition in Xenopus.
    Bentaya S, Ghogomu SM, Vanhomwegen J, Van Campenhout C, Thelie A, Dhainaut M, Bellefroid EJ, Souopgui J.
    Dev Biol; 2012 Mar 15; 363(2):362-72. PubMed ID: 22261149
    [Abstract] [Full Text] [Related]

  • 36. The role of Xmsx-2 in the anterior-posterior patterning of the mesoderm in Xenopus laevis.
    Gong SG, Kiba A.
    Differentiation; 1999 Nov 15; 65(3):131-40. PubMed ID: 10631810
    [Abstract] [Full Text] [Related]

  • 37. Interaction of goosecoid and brachyury in Xenopus mesoderm patterning.
    Artinger M, Blitz I, Inoue K, Tran U, Cho KW.
    Mech Dev; 1997 Jul 15; 65(1-2):187-96. PubMed ID: 9256355
    [Abstract] [Full Text] [Related]

  • 38. Highly conserved functions of the Brachyury gene on morphogenetic movements: insight from the early-diverging phylum Ctenophora.
    Yamada A, Martindale MQ, Fukui A, Tochinai S.
    Dev Biol; 2010 Mar 01; 339(1):212-22. PubMed ID: 20036227
    [Abstract] [Full Text] [Related]

  • 39. Xenopus laevis POU91 protein, an Oct3/4 homologue, regulates competence transitions from mesoderm to neural cell fates.
    Snir M, Ofir R, Elias S, Frank D.
    EMBO J; 2006 Aug 09; 25(15):3664-74. PubMed ID: 16858397
    [Abstract] [Full Text] [Related]

  • 40. Specification of mesodermal pattern in Xenopus laevis by interactions between Brachyury, noggin and Xwnt-8.
    Cunliffe V, Smith JC.
    EMBO J; 1994 Jan 15; 13(2):349-59. PubMed ID: 7906224
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 12.