These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


155 related items for PubMed ID: 16421196

  • 1. Differential mechanisms underlying the modulation of delayed-rectifier K+ channel in mouse neocortical neurons by nitric oxide.
    Han NL, Ye JS, Yu AC, Sheu FS.
    J Neurophysiol; 2006 Apr; 95(4):2167-78. PubMed ID: 16421196
    [Abstract] [Full Text] [Related]

  • 2. Nitric oxide blocks hKv1.5 channels by S-nitrosylation and by a cyclic GMP-dependent mechanism.
    Núñez L, Vaquero M, Gómez R, Caballero R, Mateos-Cáceres P, Macaya C, Iriepa I, Gálvez E, López-Farré A, Tamargo J, Delpón E.
    Cardiovasc Res; 2006 Oct 01; 72(1):80-9. PubMed ID: 16876149
    [Abstract] [Full Text] [Related]

  • 3. Nitric oxide activates leak K+ currents in the presumed cholinergic neuron of basal forebrain.
    Kang Y, Dempo Y, Ohashi A, Saito M, Toyoda H, Sato H, Koshino H, Maeda Y, Hirai T.
    J Neurophysiol; 2007 Dec 01; 98(6):3397-410. PubMed ID: 17928563
    [Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5. Regulation of NHE3 by nitric oxide in Caco-2 cells.
    Gill RK, Saksena S, Syed IA, Tyagi S, Alrefai WA, Malakooti J, Ramaswamy K, Dudeja PK.
    Am J Physiol Gastrointest Liver Physiol; 2002 Sep 01; 283(3):G747-56. PubMed ID: 12181191
    [Abstract] [Full Text] [Related]

  • 6. Nitric oxide enhances Ca(2+)-dependent K(+) channel activity in rat carotid body cells.
    Silva JM, Lewis DL.
    Pflugers Arch; 2002 Mar 01; 443(5-6):671-5. PubMed ID: 11889563
    [Abstract] [Full Text] [Related]

  • 7. Activation of BKCa channels via cyclic AMP- and cyclic GMP-dependent protein kinases by eugenosedin-A in rat basilar artery myocytes.
    Wu BN, Chen CF, Hong YR, Howng SL, Lin YL, Chen IJ.
    Br J Pharmacol; 2007 Oct 01; 152(3):374-85. PubMed ID: 17700725
    [Abstract] [Full Text] [Related]

  • 8. Effects of nitric oxide in cultured prevertebral sympathetic ganglion neurons.
    Browning KN, Zheng ZL, Kreulen DL, Travagli RA.
    J Pharmacol Exp Ther; 1998 Aug 01; 286(2):1086-93. PubMed ID: 9694972
    [Abstract] [Full Text] [Related]

  • 9. Modulation of Cl-/OH- exchange activity in Caco-2 cells by nitric oxide.
    Saksena S, Gill RK, Syed IA, Tyagi S, Alrefai WA, Ramaswamy K, Dudeja PK.
    Am J Physiol Gastrointest Liver Physiol; 2002 Sep 01; 283(3):G626-33. PubMed ID: 12181176
    [Abstract] [Full Text] [Related]

  • 10. Effects of Nitric Oxide on Voltage-Gated K⁺ Currents in Human Cardiac Fibroblasts through the Protein Kinase G and Protein Kinase A Pathways but Not through S-Nitrosylation.
    Bae H, Choi J, Kim YW, Lee D, Kim JH, Ko JH, Bang H, Kim T, Lim I.
    Int J Mol Sci; 2018 Mar 12; 19(3):. PubMed ID: 29534509
    [Abstract] [Full Text] [Related]

  • 11. Nitric oxide activates glibenclamide-sensitive K+ channels in urinary bladder myocytes through a c-GMP-dependent mechanism.
    Deka DK, Brading AF.
    Eur J Pharmacol; 2004 May 10; 492(1):13-9. PubMed ID: 15145700
    [Abstract] [Full Text] [Related]

  • 12. Neuronal nitric oxide synthase (nNOS) modulates the JNK1 activity through redox mechanism: a cGMP independent pathway.
    Park HS, Huh SH, Kim MS, Kim DY, Gwag BJ, Cho SG, Choi EJ.
    Biochem Biophys Res Commun; 2006 Jul 28; 346(2):408-14. PubMed ID: 16764826
    [Abstract] [Full Text] [Related]

  • 13. Hyposmotic stimulation-induced nitric oxide production in outer hair cells of the guinea pig cochlea.
    Takeda-Nakazawa H, Harada N, Shen J, Kubo N, Zenner HP, Yamashita T.
    Hear Res; 2007 May 28; 227(1-2):59-70. PubMed ID: 17092670
    [Abstract] [Full Text] [Related]

  • 14. Calcium channel activation facilitated by nitric oxide in retinal ganglion cells.
    Hirooka K, Kourennyi DE, Barnes S.
    J Neurophysiol; 2000 Jan 28; 83(1):198-206. PubMed ID: 10634867
    [Abstract] [Full Text] [Related]

  • 15. Nitric oxide protects rat hepatocytes against reperfusion injury mediated by the mitochondrial permeability transition.
    Kim JS, Ohshima S, Pediaditakis P, Lemasters JJ.
    Hepatology; 2004 Jun 28; 39(6):1533-43. PubMed ID: 15185294
    [Abstract] [Full Text] [Related]

  • 16. Nitric oxide-evoked glutamate release and cGMP production in cerebellar slices: control by presynaptic 5-HT1D receptors.
    Marcoli M, Cervetto C, Paluzzi P, Guarnieri S, Raiteri M, Maura G.
    Neurochem Int; 2006 Jul 28; 49(1):12-9. PubMed ID: 16469416
    [Abstract] [Full Text] [Related]

  • 17. Glutamate modulates sodium-potassium-ATPase through cyclic GMP and cyclic GMP-dependent protein kinase in rat striatum.
    Munhoz CD, Kawamoto EM, de Sá Lima L, Lepsch LB, Glezer I, Marcourakis T, Scavone C.
    Cell Biochem Funct; 2005 Jul 28; 23(2):115-23. PubMed ID: 15624118
    [Abstract] [Full Text] [Related]

  • 18. Potentiation by nitric oxide of the ATP-sensitive K+ current induced by K+ channel openers in guinea-pig ventricular cells.
    Shinbo A, Iijima T.
    Br J Pharmacol; 1997 Apr 28; 120(8):1568-74. PubMed ID: 9113380
    [Abstract] [Full Text] [Related]

  • 19. Nitric oxide/cGMP/PKG signaling pathway activated by M1-type muscarinic acetylcholine receptor cascade inhibits Na+-activated K+ currents in Kenyon cells.
    Hasebe M, Yoshino M.
    J Neurophysiol; 2016 Jun 01; 115(6):3174-85. PubMed ID: 26984419
    [Abstract] [Full Text] [Related]

  • 20. Nitric oxide increases the spontaneous firing rate of rat medial vestibular nucleus neurons in vitro via a cyclic GMP-mediated PKG-independent mechanism.
    Podda MV, Marcocci ME, Oggiano L, D'Ascenzo M, Tolu E, Palamara AT, Azzena GB, Grassi C.
    Eur J Neurosci; 2004 Oct 01; 20(8):2124-32. PubMed ID: 15450091
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 8.