These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


280 related items for PubMed ID: 16423566

  • 1. Immobilization of tyrosinase on poly(indole-5-carboxylic acid) evidenced by electrochemical and spectroscopic methods.
    Biegunski AT, Michota A, Bukowska J, Jackowska K.
    Bioelectrochemistry; 2006 Sep; 69(1):41-8. PubMed ID: 16423566
    [Abstract] [Full Text] [Related]

  • 2. A catechol biosensor based on a gold nanoparticles encapsulated-dendrimer.
    Singh RP.
    Analyst; 2011 Mar 21; 136(6):1216-21. PubMed ID: 21240422
    [Abstract] [Full Text] [Related]

  • 3. Immobilization of tyrosinase and alcohol oxidase in conducting copolymers of thiophene functionalized poly(vinyl alcohol) with pyrrole.
    Yildiz HB, Sahmetlioglu E, Boyukbayram AE, Toppare L, Yagci Y.
    Int J Biol Macromol; 2007 Aug 01; 41(3):332-7. PubMed ID: 17555810
    [Abstract] [Full Text] [Related]

  • 4. Immobilization of tyrosinase in polysiloxane/polypyrrole copolymer matrices.
    Arslan A, Kiralp S, Toppare L, Yagci Y.
    Int J Biol Macromol; 2005 Apr 01; 35(3-4):163-7. PubMed ID: 15811471
    [Abstract] [Full Text] [Related]

  • 5. Amperometric biosensor based on tyrosinase immobilized on a boron-doped diamond electrode.
    Zhou YL, Tian RH, Zhi JF.
    Biosens Bioelectron; 2007 Jan 15; 22(6):822-8. PubMed ID: 16621510
    [Abstract] [Full Text] [Related]

  • 6. Label-free detection of DNA hybridization based on poly(indole-5-carboxylic acid) conducting polymer.
    Li X, Xia J, Zhang S.
    Anal Chim Acta; 2008 Aug 01; 622(1-2):104-10. PubMed ID: 18602540
    [Abstract] [Full Text] [Related]

  • 7. Electrochemical sensor for catechol and dopamine based on a catalytic molecularly imprinted polymer-conducting polymer hybrid recognition element.
    Lakshmi D, Bossi A, Whitcombe MJ, Chianella I, Fowler SA, Subrahmanyam S, Piletska EV, Piletsky SA.
    Anal Chem; 2009 May 01; 81(9):3576-84. PubMed ID: 19354259
    [Abstract] [Full Text] [Related]

  • 8. Model sclerotization studies. 4. Generation of N-acetylmethionyl catechol adducts during tyrosinase-catalyzed oxidation of catechols in the presence of N-acetylmethionine.
    Sugumaran M, Nelson E.
    Arch Insect Biochem Physiol; 1998 May 01; 38(1):44-52. PubMed ID: 9589603
    [Abstract] [Full Text] [Related]

  • 9. Functionalized polypyrrole film: synthesis, characterization, and potential applications in chemical and biological sensors.
    Dong H, Cao X, Li CM.
    ACS Appl Mater Interfaces; 2009 Jul 01; 1(7):1599-606. PubMed ID: 20355967
    [Abstract] [Full Text] [Related]

  • 10. Amperometric detection of catechol using tyrosinase modified electrodes enhanced by the layer-by-layer assembly of gold nanocubes and polyelectrolytes.
    Karim MN, Lee JE, Lee HJ.
    Biosens Bioelectron; 2014 Nov 15; 61():147-51. PubMed ID: 24874658
    [Abstract] [Full Text] [Related]

  • 11. A spectroscopic and electrochemical approach to the study of the interactions and photoinduced electron transfer between catechol and anatase nanoparticles in aqueous solution.
    Lana-Villarreal T, Rodes A, Pérez JM, Gómez R.
    J Am Chem Soc; 2005 Sep 14; 127(36):12601-11. PubMed ID: 16144408
    [Abstract] [Full Text] [Related]

  • 12. Photochromism and electrochemistry of a dithienylcyclopentene electroactive polymer.
    Wesenhagen P, Areephong J, Fernandez Landaluce T, Heureux N, Katsonis N, Hjelm J, Rudolf P, Browne WR, Feringa BL.
    Langmuir; 2008 Jun 17; 24(12):6334-42. PubMed ID: 18481876
    [Abstract] [Full Text] [Related]

  • 13. In-situ spectroscopic investigations of the redox behavior of poly(indole-5-carboxylic-acid) modified electrodes in acidic aqueous solutions.
    Talbi H, Billaud D, Louarn G, Pron A.
    Spectrochim Acta A Mol Biomol Spectrosc; 2001 Mar 01; 57(3):423-33. PubMed ID: 11300553
    [Abstract] [Full Text] [Related]

  • 14. Amperometric tyrosinase biosensor based on polyacrylamide microgels.
    Hervás Pérez JP, Sánchez-Paniagua López M, López-Cabarcos E, López-Ruiz B.
    Biosens Bioelectron; 2006 Sep 15; 22(3):429-39. PubMed ID: 16806888
    [Abstract] [Full Text] [Related]

  • 15. Tyrosinase: polybrene noncovalent complexes in water-ethanol mixtures.
    Shipovskov S, Levashov A.
    Biotechnol Bioeng; 2003 Oct 20; 84(2):258-63. PubMed ID: 12966584
    [Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18. Electrochemical behavior of catechol and 3,4-dihydroxytoluene in acetonitrile at a platinum-disk electrode modified with a tyrosinase containing polyacrylamide film.
    Miyasaka T, Takahashi Y, Nakamura T.
    Anal Sci; 2001 Sep 20; 17(9):1055-8. PubMed ID: 11708058
    [Abstract] [Full Text] [Related]

  • 19. Development of a high analytical performance-tyrosinase biosensor based on a composite graphite-Teflon electrode modified with gold nanoparticles.
    Carralero V, Mena ML, Gonzalez-Cortés A, Yáñez-Sedeño P, Pingarrón JM.
    Biosens Bioelectron; 2006 Dec 15; 22(5):730-6. PubMed ID: 16569498
    [Abstract] [Full Text] [Related]

  • 20. Layer-by-Layer coated tyrosinase: An efficient and selective synthesis of catechols.
    Guazzaroni M, Crestini C, Saladino R.
    Bioorg Med Chem; 2012 Jan 01; 20(1):157-66. PubMed ID: 22154294
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 14.