These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


451 related items for PubMed ID: 16424918

  • 21. LNA-antisense rivals siRNA for gene silencing.
    Jepsen JS, Wengel J.
    Curr Opin Drug Discov Devel; 2004 Mar; 7(2):188-94. PubMed ID: 15603252
    [Abstract] [Full Text] [Related]

  • 22. Use of herpes simplex virus type 1-based amplicon vector for delivery of small interfering RNA.
    Sabbioni S, Callegari E, Manservigi M, Argnani R, Corallini A, Negrini M, Manservigi R.
    Gene Ther; 2007 Mar; 14(5):459-64. PubMed ID: 17051250
    [Abstract] [Full Text] [Related]

  • 23. Unlocking the potential of the human genome with RNA interference.
    Hannon GJ, Rossi JJ.
    Nature; 2004 Sep 16; 431(7006):371-8. PubMed ID: 15372045
    [Abstract] [Full Text] [Related]

  • 24. Not nonsense but antisense--applications of antisense oligonucleotides in different fields of medicine.
    Oberbauer R.
    Wien Klin Wochenschr; 1997 Jan 31; 109(2):40-6. PubMed ID: 9123943
    [Abstract] [Full Text] [Related]

  • 25. siRNA delivery systems for cancer treatment.
    Oh YK, Park TG.
    Adv Drug Deliv Rev; 2009 Aug 10; 61(10):850-62. PubMed ID: 19422869
    [Abstract] [Full Text] [Related]

  • 26. RNA interference for the treatment of cancer.
    Putral LN, Gu W, McMillan NA.
    Drug News Perspect; 2006 Aug 10; 19(6):317-24. PubMed ID: 16971967
    [Abstract] [Full Text] [Related]

  • 27. The development and future of oligonucleotide-based therapies for cervical cancer.
    Gu W, Putral LN, Irving A, McMillan NA.
    Curr Opin Mol Ther; 2007 Apr 10; 9(2):126-31. PubMed ID: 17458165
    [Abstract] [Full Text] [Related]

  • 28. [Development of antituberculous drugs: current status and future prospects].
    Tomioka H, Namba K.
    Kekkaku; 2006 Dec 10; 81(12):753-74. PubMed ID: 17240921
    [Abstract] [Full Text] [Related]

  • 29. RNA interference: potential therapeutic targets.
    Jana S, Chakraborty C, Nandi S, Deb JK.
    Appl Microbiol Biotechnol; 2004 Nov 10; 65(6):649-57. PubMed ID: 15372214
    [Abstract] [Full Text] [Related]

  • 30. Nonviral delivery vehicles for use in short hairpin RNA-based cancer therapies.
    Vorhies JS, Nemunaitis J.
    Expert Rev Anticancer Ther; 2007 Mar 10; 7(3):373-82. PubMed ID: 17338656
    [Abstract] [Full Text] [Related]

  • 31.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 32.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 33.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 34.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 35. siRNA--getting the message out.
    Lee SH, Sinko PJ.
    Eur J Pharm Sci; 2006 Apr 10; 27(5):401-10. PubMed ID: 16442784
    [Abstract] [Full Text] [Related]

  • 36.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 37. Therapeutic application of RNA interference for hepatitis C virus.
    Watanabe T, Umehara T, Kohara M.
    Adv Drug Deliv Rev; 2007 Oct 10; 59(12):1263-76. PubMed ID: 17822803
    [Abstract] [Full Text] [Related]

  • 38.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 39.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 40. Development of gene-specific double-stranded RNA drugs.
    Barik S.
    Ann Med; 2004 Oct 10; 36(7):540-51. PubMed ID: 15513304
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 23.