These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
164 related items for PubMed ID: 16426850
1. Prediction of hERG potassium channel affinity by the CODESSA approach. Coi A, Massarelli I, Murgia L, Saraceno M, Calderone V, Bianucci AM. Bioorg Med Chem; 2006 May 01; 14(9):3153-9. PubMed ID: 16426850 [Abstract] [Full Text] [Related]
2. A binary QSAR model for classification of hERG potassium channel blockers. Thai KM, Ecker GF. Bioorg Med Chem; 2008 Apr 01; 16(7):4107-19. PubMed ID: 18243713 [Abstract] [Full Text] [Related]
3. Quantitative structure-activity relationship models for predicting biological properties, developed by combining structure- and ligand-based approaches: an application to the human ether-a-go-go-related gene potassium channel inhibition. Coi A, Massarelli I, Saraceno M, Carli N, Testai L, Calderone V, Bianucci AM. Chem Biol Drug Des; 2009 Oct 01; 74(4):416-33. PubMed ID: 19751420 [Abstract] [Full Text] [Related]
5. A comprehensive support vector machine binary hERG classification model based on extensive but biased end point hERG data sets. Shen MY, Su BH, Esposito EX, Hopfinger AJ, Tseng YJ. Chem Res Toxicol; 2011 Jun 20; 24(6):934-49. PubMed ID: 21504223 [Abstract] [Full Text] [Related]
6. Bias-correction of regression models: a case study on hERG inhibition. Hansen K, Rathke F, Schroeter T, Rast G, Fox T, Kriegl JM, Mika S. J Chem Inf Model; 2009 Jun 20; 49(6):1486-96. PubMed ID: 19435326 [Abstract] [Full Text] [Related]
7. Prospective validation of a comprehensive in silico hERG model and its applications to commercial compound and drug databases. Doddareddy MR, Klaasse EC, Shagufta, Ijzerman AP, Bender A. ChemMedChem; 2010 May 03; 5(5):716-29. PubMed ID: 20349498 [Abstract] [Full Text] [Related]
8. Combined receptor and ligand-based approach to the universal pharmacophore model development for studies of drug blockade to the hERG1 pore domain. Durdagi S, Duff HJ, Noskov SY. J Chem Inf Model; 2011 Feb 28; 51(2):463-74. PubMed ID: 21241063 [Abstract] [Full Text] [Related]
9. GRIND-based 3D-QSAR and CoMFA to investigate topics dominated by hydrophobic interactions: the case of hERG K+ channel blockers. Ermondi G, Visentin S, Caron G. Eur J Med Chem; 2009 May 28; 44(5):1926-32. PubMed ID: 19110341 [Abstract] [Full Text] [Related]
10. A novel approach using pharmacophore ensemble/support vector machine (PhE/SVM) for prediction of hERG liability. Leong MK. Chem Res Toxicol; 2007 Feb 28; 20(2):217-26. PubMed ID: 17261034 [Abstract] [Full Text] [Related]
11. In silico binary classification QSAR models based on 4D-fingerprints and MOE descriptors for prediction of hERG blockage. Su BH, Shen MY, Esposito EX, Hopfinger AJ, Tseng YJ. J Chem Inf Model; 2010 Jul 26; 50(7):1304-18. PubMed ID: 20565102 [Abstract] [Full Text] [Related]
16. Determination of hERG channel blockers using a decision tree. Gepp MM, Hutter MC. Bioorg Med Chem; 2006 Aug 01; 14(15):5325-32. PubMed ID: 16616507 [Abstract] [Full Text] [Related]