These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


205 related items for PubMed ID: 16434649

  • 1. Virtual reality cues for improvement of gait in patients with multiple sclerosis.
    Baram Y, Miller A.
    Neurology; 2006 Jan 24; 66(2):178-81. PubMed ID: 16434649
    [Abstract] [Full Text] [Related]

  • 2. Auditory feedback control for improvement of gait in patients with Multiple Sclerosis.
    Baram Y, Miller A.
    J Neurol Sci; 2007 Mar 15; 254(1-2):90-4. PubMed ID: 17316692
    [Abstract] [Full Text] [Related]

  • 3. [Strength, postural and gait changes following rehabilitation in multiple sclerosis: a preliminary study].
    Cantalloube S, Monteil I, Lamotte D, Mailhan L, Thoumie P.
    Ann Readapt Med Phys; 2006 May 15; 49(4):143-9. PubMed ID: 16545886
    [Abstract] [Full Text] [Related]

  • 4. Robot-assisted gait training in multiple sclerosis: a pilot randomized trial.
    Beer S, Aschbacher B, Manoglou D, Gamper E, Kool J, Kesselring J.
    Mult Scler; 2008 Mar 15; 14(2):231-6. PubMed ID: 17942510
    [Abstract] [Full Text] [Related]

  • 5. Spatiotemporal gait deviations in a virtual reality environment.
    Hollman JH, Brey RH, Robb RA, Bang TJ, Kaufman KR.
    Gait Posture; 2006 Jun 15; 23(4):441-4. PubMed ID: 16095905
    [Abstract] [Full Text] [Related]

  • 6. Variability of lower extremity joint kinematics during backward walking in a virtual environment.
    Katsavelis D, Mukherjee M, Decker L, Stergiou N.
    Nonlinear Dynamics Psychol Life Sci; 2010 Apr 15; 14(2):165-78. PubMed ID: 20346261
    [Abstract] [Full Text] [Related]

  • 7. The effect of virtual reality on gait variability.
    Katsavelis D, Mukherjee M, Decker L, Stergiou N.
    Nonlinear Dynamics Psychol Life Sci; 2010 Jul 15; 14(3):239-56. PubMed ID: 20587300
    [Abstract] [Full Text] [Related]

  • 8. Does walking in a virtual environment induce unstable gait? An examination of vertical ground reaction forces.
    Hollman JH, Brey RH, Bang TJ, Kaufman KR.
    Gait Posture; 2007 Jul 15; 26(2):289-94. PubMed ID: 17056258
    [Abstract] [Full Text] [Related]

  • 9. The effect of rhythmic somatosensory cueing on gait in patients with Parkinson's disease.
    van Wegen E, de Goede C, Lim I, Rietberg M, Nieuwboer A, Willems A, Jones D, Rochester L, Hetherington V, Berendse H, Zijlmans J, Wolters E, Kwakkel G.
    J Neurol Sci; 2006 Oct 25; 248(1-2):210-4. PubMed ID: 16780887
    [Abstract] [Full Text] [Related]

  • 10. Effects of long-term gait training using visual cues in an individual with Parkinson disease.
    Sidaway B, Anderson J, Danielson G, Martin L, Smith G.
    Phys Ther; 2006 Feb 25; 86(2):186-94. PubMed ID: 16445332
    [Abstract] [Full Text] [Related]

  • 11. The effect of functional electrical stimulation on the physiological cost of gait in people with multiple sclerosis.
    Paul L, Rafferty D, Young S, Miller L, Mattison P, McFadyen A.
    Mult Scler; 2008 Aug 25; 14(7):954-61. PubMed ID: 18573839
    [Abstract] [Full Text] [Related]

  • 12. The use of rhythmic auditory cues to influence gait in patients with Parkinson's disease, the differential effect for freezers and non-freezers, an explorative study.
    Willems AM, Nieuwboer A, Chavret F, Desloovere K, Dom R, Rochester L, Jones D, Kwakkel G, Van Wegen E.
    Disabil Rehabil; 2006 Jun 15; 28(11):721-8. PubMed ID: 16809215
    [Abstract] [Full Text] [Related]

  • 13. Closed-loop auditory feedback for the improvement of gait in patients with Parkinson's disease.
    Baram Y, Aharon-Peretz J, Badarny S, Susel Z, Schlesinger I.
    J Neurol Sci; 2016 Apr 15; 363():104-6. PubMed ID: 27000231
    [Abstract] [Full Text] [Related]

  • 14. Muscle force and gait performance: relationships after spinal cord injury.
    Wirz M, van Hedel HJ, Rupp R, Curt A, Dietz V.
    Arch Phys Med Rehabil; 2006 Sep 15; 87(9):1218-22. PubMed ID: 16935058
    [Abstract] [Full Text] [Related]

  • 15. A preliminary investigation of a novel design of visual cue glasses that aid gait in Parkinson's disease.
    McAuley JH, Daly PM, Curtis CR.
    Clin Rehabil; 2009 Aug 15; 23(8):687-95. PubMed ID: 19403552
    [Abstract] [Full Text] [Related]

  • 16. Sounding better: fast audio cues increase walk speed in treadmill-mediated virtual rehabilitation environments.
    Powell W, Stevens B, Hand S, Simmonds M.
    Stud Health Technol Inform; 2010 Aug 15; 154():202-7. PubMed ID: 20543298
    [Abstract] [Full Text] [Related]

  • 17. Computerized visual feedback: an adjunct to robotic-assisted gait training.
    Banz R, Bolliger M, Colombo G, Dietz V, Lünenburger L.
    Phys Ther; 2008 Oct 15; 88(10):1135-45. PubMed ID: 18772279
    [Abstract] [Full Text] [Related]

  • 18. Glide-symmetric locomotion reinforcement in patients with multiple sclerosis by visual feedback.
    Baram Y, Miller A.
    Disabil Rehabil Assist Technol; 2010 Oct 15; 5(5):323-6. PubMed ID: 20187737
    [Abstract] [Full Text] [Related]

  • 19. Speed- and cane-related alterations in gait parameters in individuals with multiple sclerosis.
    Gianfrancesco MA, Triche EW, Fawcett JA, Labas MP, Patterson TS, Lo AC.
    Gait Posture; 2011 Jan 15; 33(1):140-2. PubMed ID: 20952198
    [Abstract] [Full Text] [Related]

  • 20. Immersive virtual reality during gait rehabilitation increases walking speed and motivation: a usability evaluation with healthy participants and patients with multiple sclerosis and stroke.
    Winter C, Kern F, Gall D, Latoschik ME, Pauli P, Käthner I.
    J Neuroeng Rehabil; 2021 Apr 22; 18(1):68. PubMed ID: 33888148
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 11.