These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


665 related items for PubMed ID: 16435815

  • 21.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 22.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 23. Building transition probabilities for any condition using reduced cumulative energy transfer functions in H2O-H2O collisions.
    Bustos-Marún RA, Coronado EA, Ferrero JC.
    J Chem Phys; 2007 Mar 28; 126(12):124305. PubMed ID: 17411121
    [Abstract] [Full Text] [Related]

  • 24. Rovibrational energy transfer in the 4nuCH manifold of acetylene, viewed by IR-UV double resonance spectroscopy. 5. Detailed kinetic model.
    Payne MA, Milce AP, Frost MJ, Orr BJ.
    J Phys Chem A; 2007 Dec 13; 111(49):12839-53. PubMed ID: 18052311
    [Abstract] [Full Text] [Related]

  • 25.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 26. Dynamics of weak and strong collisions: highly vibrationally excited pyrazine (E = 37900 cm(-1)) with DCl.
    Du J, Yuan L, Hsieh S, Lin F, Mullin AS.
    J Phys Chem A; 2008 Oct 02; 112(39):9396-404. PubMed ID: 18729434
    [Abstract] [Full Text] [Related]

  • 27.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 28. Quasiclassical trajectory study of energy transfer and collision-induced dissociation in hyperthermal Ar + CH4 and Ar + CF4 collisions.
    Troya D.
    J Phys Chem A; 2005 Jul 07; 109(26):5814-24. PubMed ID: 16833915
    [Abstract] [Full Text] [Related]

  • 29.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 30.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 31. Effect of the cluster angular momentum J and the projectile orbital momentum L on capture probability and postcollision dynamics.
    Mella M.
    J Chem Phys; 2009 Sep 28; 131(12):124309. PubMed ID: 19791883
    [Abstract] [Full Text] [Related]

  • 32. Energy transfer of highly vibrationally excited naphthalene: collisions with CHF3, CF4, and Kr.
    Chen Hsu H, Tsai MT, Dyakov YA, Ni CK.
    J Chem Phys; 2011 Aug 07; 135(5):054311. PubMed ID: 21823704
    [Abstract] [Full Text] [Related]

  • 33. Equilibration of vibrationally excited OH in atomic and diatomic bath gases.
    McCaffery AJ, Pritchard M, Turner JF, Marsh RJ.
    J Phys Chem A; 2011 May 05; 115(17):4169-78. PubMed ID: 21480649
    [Abstract] [Full Text] [Related]

  • 34.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 35.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 36.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 37.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 38. Energy transfer of highly vibrationally excited naphthalene. II. Vibrational energy dependence and isotope and mass effects.
    Liu CL, Hsu HC, Hsu YC, Ni CK.
    J Chem Phys; 2008 Mar 28; 128(12):124320. PubMed ID: 18376932
    [Abstract] [Full Text] [Related]

  • 39. The He-LiH potential energy surface revisited. II. Rovibrational energy transfer on a three-dimensional surface.
    Taylor BK, Hinde RJ.
    J Chem Phys; 2005 Feb 15; 122(7):074308. PubMed ID: 15743233
    [Abstract] [Full Text] [Related]

  • 40. Energy transfer of highly vibrationally excited naphthalene. III. Rotational effects.
    Liu CL, Hsu HC, Ni CK.
    J Chem Phys; 2008 Apr 28; 128(16):164316. PubMed ID: 18447448
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 34.