These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


199 related items for PubMed ID: 16439244

  • 1. Wall shear stress in normal left coronary artery tree.
    Soulis JV, Farmakis TM, Giannoglou GD, Louridas GE.
    J Biomech; 2006; 39(4):742-9. PubMed ID: 16439244
    [Abstract] [Full Text] [Related]

  • 2. Wall shear stress gradient topography in the normal left coronary arterial tree: possible implications for atherogenesis.
    Farmakis TM, Soulis JV, Giannoglou GD, Zioupos GJ, Louridas GE.
    Curr Med Res Opin; 2004 May; 20(5):587-96. PubMed ID: 15140324
    [Abstract] [Full Text] [Related]

  • 3. Wall pressure gradient in normal left coronary artery tree.
    Giannoglou GD, Soulis JV, Farmakis TM, Giannakoulas GA, Parcharidis GE, Louridas GE.
    Med Eng Phys; 2005 Jul; 27(6):455-64. PubMed ID: 15990062
    [Abstract] [Full Text] [Related]

  • 4. Low-Density Lipoprotein concentration in the normal Left Coronary Artery tree.
    Soulis JV, Giannoglou GD, Papaioannou V, Parcharidis GE, Louridas GE.
    Biomed Eng Online; 2008 Oct 17; 7():26. PubMed ID: 18925974
    [Abstract] [Full Text] [Related]

  • 5. Molecular viscosity in the normal left coronary arterial tree. Is it related to atherosclerosis?
    Soulis JV, Farmakis TM, Giannoglou GD, Chatzizisis YS, Giannakoulas GA, Parcharidis GE, Louridas GE.
    Angiology; 2006 Oct 17; 57(1):33-40. PubMed ID: 16444454
    [Abstract] [Full Text] [Related]

  • 6. Flow parameters in normal left coronary artery tree. Implication to atherogenesis.
    Soulis JV, Giannoglou GD, Parcharidis GE, Louridas GE.
    Comput Biol Med; 2007 May 17; 37(5):628-36. PubMed ID: 16920094
    [Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8. Investigation of the haemodynamic environment of bifurcation plaques within the left coronary artery in realistic patient models based on CT images.
    Chaichana T, Sun Z, Jewkes J.
    Australas Phys Eng Sci Med; 2012 Jun 17; 35(2):231-6. PubMed ID: 22528858
    [Abstract] [Full Text] [Related]

  • 9. Non-Newtonian models for molecular viscosity and wall shear stress in a 3D reconstructed human left coronary artery.
    Soulis JV, Giannoglou GD, Chatzizisis YS, Seralidou KV, Parcharidis GE, Louridas GE.
    Med Eng Phys; 2008 Jan 17; 30(1):9-19. PubMed ID: 17412633
    [Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11. Flow patterns in three-dimensional porcine epicardial coronary arterial tree.
    Huo Y, Wischgoll T, Kassab GS.
    Am J Physiol Heart Circ Physiol; 2007 Nov 17; 293(5):H2959-70. PubMed ID: 17827262
    [Abstract] [Full Text] [Related]

  • 12. Alterations in regional vascular geometry produced by theoretical stent implantation influence distributions of wall shear stress: analysis of a curved coronary artery using 3D computational fluid dynamics modeling.
    LaDisa JF, Olson LE, Douglas HA, Warltier DC, Kersten JR, Pagel PS.
    Biomed Eng Online; 2006 Jun 16; 5():40. PubMed ID: 16780592
    [Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15. Impact of plaques in the left coronary artery on wall shear stress and pressure gradient in coronary side branches.
    Chaichana T, Sun Z, Jewkes J.
    Comput Methods Biomech Biomed Engin; 2014 Jun 16; 17(2):108-18. PubMed ID: 22443493
    [Abstract] [Full Text] [Related]

  • 16. Haemodynamic assessment of human coronary arteries is affected by degree of freedom of artery movement.
    Javadzadegan A, Yong AS, Chang M, Ng MK, Behnia M, Kritharides L.
    Comput Methods Biomech Biomed Engin; 2017 Feb 16; 20(3):260-272. PubMed ID: 27467730
    [Abstract] [Full Text] [Related]

  • 17. Spatial and phasic oscillation of non-Newtonian wall shear stress in human left coronary artery bifurcation: an insight to atherogenesis.
    Soulis JV, Giannoglou GD, Chatzizisis YS, Farmakis TM, Giannakoulas GA, Parcharidis GE, Louridas GE.
    Coron Artery Dis; 2006 May 16; 17(4):351-8. PubMed ID: 16707958
    [Abstract] [Full Text] [Related]

  • 18. The impact of scaled boundary conditions on wall shear stress computations in atherosclerotic human coronary bifurcations.
    Schrauwen JT, Schwarz JC, Wentzel JJ, van der Steen AF, Siebes M, Gijsen FJ.
    Am J Physiol Heart Circ Physiol; 2016 May 15; 310(10):H1304-12. PubMed ID: 26945083
    [Abstract] [Full Text] [Related]

  • 19. Link between deviations from Murray's Law and occurrence of low wall shear stress regions in the left coronary artery.
    Doutel E, Pinto SI, Campos JB, Miranda JM.
    J Theor Biol; 2016 Aug 07; 402():89-99. PubMed ID: 27157126
    [Abstract] [Full Text] [Related]

  • 20. Oscillatory wall shear stress is a dominant flow characteristic affecting lesion progression patterns and plaque vulnerability in patients with coronary artery disease.
    Timmins LH, Molony DS, Eshtehardi P, McDaniel MC, Oshinski JN, Giddens DP, Samady H.
    J R Soc Interface; 2017 Feb 07; 14(127):. PubMed ID: 28148771
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 10.