These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
22. The flow field along the entire length of mouse aorta and primary branches. Huo Y, Guo X, Kassab GS. Ann Biomed Eng; 2008 May; 36(5):685-99. PubMed ID: 18299987 [Abstract] [Full Text] [Related]
23. Hemodynamics and wall mechanics in human carotid bifurcation and its consequences for atherogenesis: investigation of inter-individual variation. Younis HF, Kaazempur-Mofrad MR, Chan RC, Isasi AG, Hinton DP, Chau AH, Kim LA, Kamm RD. Biomech Model Mechanobiol; 2004 Sep; 3(1):17-32. PubMed ID: 15300454 [Abstract] [Full Text] [Related]
24. Computational modeling of LDL and albumin transport in an in vivo CT image-based human right coronary artery. Sun N, Torii R, Wood NB, Hughes AD, Thom SA, Xu XY. J Biomech Eng; 2009 Feb; 131(2):021003. PubMed ID: 19102562 [Abstract] [Full Text] [Related]
25. In-vivo coronary flow profiling based on biplane angiograms: influence of geometric simplifications on the three-dimensional reconstruction and wall shear stress calculation. Wellnhofer E, Goubergrits L, Kertzscher U, Affeld K. Biomed Eng Online; 2006 Jun 14; 5():39. PubMed ID: 16774680 [Abstract] [Full Text] [Related]
26. Fluid dynamic analysis in a human left anterior descending coronary artery with arterial motion. Ramaswamy SD, Vigmostad SC, Wahle A, Lai YG, Olszewski ME, Braddy KC, Brennan TM, Rossen JD, Sonka M, Chandran KB. Ann Biomed Eng; 2004 Dec 14; 32(12):1628-41. PubMed ID: 15675676 [Abstract] [Full Text] [Related]
27. A study on the compliance of a right coronary artery and its impact on wall shear stress. Zeng D, Boutsianis E, Ammann M, Boomsma K, Wildermuth S, Poulikakos D. J Biomech Eng; 2008 Aug 14; 130(4):041014. PubMed ID: 18601456 [Abstract] [Full Text] [Related]
28. Hemodynamic impacts of various types of stenosis in the left coronary artery bifurcation: a patient-specific analysis. Chaichana T, Sun Z, Jewkes J. Phys Med; 2013 Sep 14; 29(5):447-52. PubMed ID: 23453845 [Abstract] [Full Text] [Related]
29. Choosing the optimal wall shear parameter for the prediction of plaque location-A patient-specific computational study in human left coronary arteries. Rikhtegar F, Knight JA, Olgac U, Saur SC, Poulikakos D, Marshall W, Cattin PC, Alkadhi H, Kurtcuoglu V. Atherosclerosis; 2012 Apr 14; 221(2):432-7. PubMed ID: 22317967 [Abstract] [Full Text] [Related]
30. Multidirectional wall shear stress promotes advanced coronary plaque development: comparing five shear stress metrics. Hoogendoorn A, Kok AM, Hartman EMJ, de Nisco G, Casadonte L, Chiastra C, Coenen A, Korteland SA, Van der Heiden K, Gijsen FJH, Duncker DJ, van der Steen AFW, Wentzel JJ. Cardiovasc Res; 2020 May 01; 116(6):1136-1146. PubMed ID: 31504238 [Abstract] [Full Text] [Related]
31. Hemodynamic analysis in an idealized artery tree: differences in wall shear stress between Newtonian and non-Newtonian blood models. Weddell JC, Kwack J, Imoukhuede PI, Masud A. PLoS One; 2015 May 01; 10(4):e0124575. PubMed ID: 25897758 [Abstract] [Full Text] [Related]
32. [Comparative analysis of atherosclerotic plaque distribution in the left main coronary artery and proximal segments of left anterior descending and left circumflex arteries in patients qualified for percutaneous coronary angioplasty]. Gziut AI. Ann Acad Med Stetin; 2006 May 01; 52(2):51-62; discussion 62-3. PubMed ID: 17633397 [Abstract] [Full Text] [Related]
33. Simulation of LDL permeation into multilayer wall of a coronary bifurcation using WSS-dependent model: effects of hemorheology. Moniripiri M, Hassani Soukht Abandani M, Firoozabadi B. Biomech Model Mechanobiol; 2023 Apr 01; 22(2):711-727. PubMed ID: 36525181 [Abstract] [Full Text] [Related]
34. Computed numerical analysis of the biomechanical effects on coronary atherogenesis using human hemodynamic and dimensional variables. Lee BK, Kwon HM, Kim D, Yoon YW, Seo JK, Kim IJ, Roh HW, Suh SH, Yoo SS, Kim HS. Yonsei Med J; 1998 Apr 01; 39(2):166-74. PubMed ID: 9587258 [Abstract] [Full Text] [Related]
35. Hemodynamic analysis of patient-specific coronary artery tree. Zhang JM, Luo T, Tan SY, Lomarda AM, Wong AS, Keng FY, Allen JC, Huo Y, Su B, Zhao X, Wan M, Kassab GS, Tan RS, Zhong L. Int J Numer Method Biomed Eng; 2015 Apr 01; 31(4):e02708. PubMed ID: 25630671 [Abstract] [Full Text] [Related]
36. Plaque and shear stress distribution in human coronary bifurcations: a multislice computed tomography study. van der Giessen AG, Wentzel JJ, Meijboom WB, Mollet NR, van der Steen AF, van de Vosse FN, de Feyter PJ, Gijsen FJ. EuroIntervention; 2009 Mar 01; 4(5):654-61. PubMed ID: 19378688 [Abstract] [Full Text] [Related]
37. The influence of boundary conditions on wall shear stress distribution in patients specific coronary trees. van der Giessen AG, Groen HC, Doriot PA, de Feyter PJ, van der Steen AF, van de Vosse FN, Wentzel JJ, Gijsen FJ. J Biomech; 2011 Apr 07; 44(6):1089-95. PubMed ID: 21349523 [Abstract] [Full Text] [Related]
38. Numerical study of wall shear stress-based descriptors in the human left coronary artery. Pinto SI, Campos JB. Comput Methods Biomech Biomed Engin; 2016 Oct 07; 19(13):1443-55. PubMed ID: 26883291 [Abstract] [Full Text] [Related]
39. Magnetohydrodynamic blood flow in patients with coronary artery disease. Javadzadegan A, Moshfegh A, Afrouzi HH, Omidi M. Comput Methods Programs Biomed; 2018 Sep 07; 163():111-122. PubMed ID: 30119846 [Abstract] [Full Text] [Related]
40. Coronary artery plaque growth: A two-way coupled shear stress-driven model. Arzani A. Int J Numer Method Biomed Eng; 2020 Jan 07; 36(1):e3293. PubMed ID: 31820589 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]