These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


317 related items for PubMed ID: 16439663

  • 1. Design and evolution of new catalytic activity with an existing protein scaffold.
    Park HS, Nam SH, Lee JK, Yoon CN, Mannervik B, Benkovic SJ, Kim HS.
    Science; 2006 Jan 27; 311(5760):535-8. PubMed ID: 16439663
    [Abstract] [Full Text] [Related]

  • 2. Identification of metal binding residues for the binuclear zinc phosphodiesterase reveals identical coordination as glyoxalase II.
    Vogel A, Schilling O, Meyer-Klaucke W.
    Biochemistry; 2004 Aug 17; 43(32):10379-86. PubMed ID: 15301536
    [Abstract] [Full Text] [Related]

  • 3. Biochemistry. Loop grafting and the origins of enzyme species.
    Tawfik DS.
    Science; 2006 Jan 27; 311(5760):475-6. PubMed ID: 16439649
    [No Abstract] [Full Text] [Related]

  • 4. Biochemical and structural characterization of Salmonella typhimurium glyoxalase II: new insights into metal ion selectivity.
    Campos-Bermudez VA, Leite NR, Krog R, Costa-Filho AJ, Soncini FC, Oliva G, Vila AJ.
    Biochemistry; 2007 Oct 02; 46(39):11069-79. PubMed ID: 17764159
    [Abstract] [Full Text] [Related]

  • 5. Predicting the emergence of antibiotic resistance by directed evolution and structural analysis.
    Orencia MC, Yoon JS, Ness JE, Stemmer WP, Stevens RC.
    Nat Struct Biol; 2001 Mar 02; 8(3):238-42. PubMed ID: 11224569
    [Abstract] [Full Text] [Related]

  • 6. Flexible metal binding of the metallo-beta-lactamase domain: glyoxalase II incorporates iron, manganese, and zinc in vivo.
    Schilling O, Wenzel N, Naylor M, Vogel A, Crowder M, Makaroff C, Meyer-Klaucke W.
    Biochemistry; 2003 Oct 14; 42(40):11777-86. PubMed ID: 14529289
    [Abstract] [Full Text] [Related]

  • 7. Protein design through systematic catalytic loop exchange in the (beta/alpha)8 fold.
    Ochoa-Leyva A, Soberón X, Sánchez F, Argüello M, Montero-Morán G, Saab-Rincón G.
    J Mol Biol; 2009 Apr 10; 387(4):949-64. PubMed ID: 19233201
    [Abstract] [Full Text] [Related]

  • 8. Directed evolution of new catalytic activity using the alpha/beta-barrel scaffold.
    Altamirano MM, Blackburn JM, Aguayo C, Fersht AR.
    Nature; 2000 Feb 10; 403(6770):617-22. PubMed ID: 10688189
    [Abstract] [Full Text] [Related]

  • 9. Catalysis and structural properties of Leishmania infantum glyoxalase II: trypanothione specificity and phylogeny.
    Silva MS, Barata L, Ferreira AE, Romão S, Tomás AM, Freire AP, Cordeiro C.
    Biochemistry; 2008 Jan 08; 47(1):195-204. PubMed ID: 18052346
    [Abstract] [Full Text] [Related]

  • 10. Role of changes in the L3 loop of the active site in the evolution of enzymatic activity of VIM-type metallo-beta-lactamases.
    Merino M, Pérez-Llarena FJ, Kerff F, Poza M, Mallo S, Rumbo-Feal S, Beceiro A, Juan C, Oliver A, Bou G.
    J Antimicrob Chemother; 2010 Sep 08; 65(9):1950-4. PubMed ID: 20624761
    [Abstract] [Full Text] [Related]

  • 11. Substrate binding to mononuclear metallo-beta-lactamase from Bacillus cereus.
    Dal Peraro M, Vila AJ, Carloni P.
    Proteins; 2004 Feb 15; 54(3):412-23. PubMed ID: 14747990
    [Abstract] [Full Text] [Related]

  • 12. Structural analysis of a ternary complex of allantoate amidohydrolase from Escherichia coli reveals its mechanics.
    Agarwal R, Burley SK, Swaminathan S.
    J Mol Biol; 2007 Apr 27; 368(2):450-63. PubMed ID: 17362992
    [Abstract] [Full Text] [Related]

  • 13. An evolutionary classification of the metallo-beta-lactamase fold proteins.
    Aravind L.
    In Silico Biol; 1999 Apr 27; 1(2):69-91. PubMed ID: 11471246
    [Abstract] [Full Text] [Related]

  • 14. Functional control of the binuclear metal site in the metallo-beta-lactamase-like fold by subtle amino acid replacements.
    Gomes CM, Frazão C, Xavier AV, Legall J, Teixeira M.
    Protein Sci; 2002 Mar 27; 11(3):707-12. PubMed ID: 11847294
    [Abstract] [Full Text] [Related]

  • 15. Structure-function studies of arginine at position 276 in CTX-M beta-lactamases.
    Pérez-Llarena FJ, Cartelle M, Mallo S, Beceiro A, Pérez A, Villanueva R, Romero A, Bonnet R, Bou G.
    J Antimicrob Chemother; 2008 Apr 27; 61(4):792-7. PubMed ID: 18281307
    [Abstract] [Full Text] [Related]

  • 16. Hydroxyl groups in the (beta)beta sandwich of metallo-beta-lactamases favor enzyme activity: a computational protein design study.
    Oelschlaeger P, Mayo SL.
    J Mol Biol; 2005 Jul 15; 350(3):395-401. PubMed ID: 15946681
    [Abstract] [Full Text] [Related]

  • 17. Engineering allosteric regulation into the hinge region of a circularly permuted TEM-1 beta-lactamase.
    Mathieu V, Fastrez J, Soumillion P.
    Protein Eng Des Sel; 2010 Sep 15; 23(9):699-709. PubMed ID: 20591901
    [Abstract] [Full Text] [Related]

  • 18. The Reaction Mechanism of Metallo-β-Lactamases Is Tuned by the Conformation of an Active-Site Mobile Loop.
    Palacios AR, Mojica MF, Giannini E, Taracila MA, Bethel CR, Alzari PM, Otero LH, Klinke S, Llarrull LI, Bonomo RA, Vila AJ.
    Antimicrob Agents Chemother; 2019 Jan 15; 63(1):. PubMed ID: 30348667
    [Abstract] [Full Text] [Related]

  • 19. Structure and dynamics of CTX-M enzymes reveal insights into substrate accommodation by extended-spectrum beta-lactamases.
    Delmas J, Chen Y, Prati F, Robin F, Shoichet BK, Bonnet R.
    J Mol Biol; 2008 Jan 04; 375(1):192-201. PubMed ID: 17999931
    [Abstract] [Full Text] [Related]

  • 20. Plasmodium falciparum glyoxalase II: Theorell-Chance product inhibition patterns, rate-limiting substrate binding via Arg(257)/Lys(260), and unmasking of acid-base catalysis.
    Urscher M, Deponte M.
    Biol Chem; 2009 Nov 04; 390(11):1171-83. PubMed ID: 19663684
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 16.