These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
108 related items for PubMed ID: 1644196
1. Antifungal activity of chitin-binding PR-4 type proteins from barley grain and stressed leaf. Hejgaard J, Jacobsen S, Bjørn SE, Kragh KM. FEBS Lett; 1992 Aug 03; 307(3):389-92. PubMed ID: 1644196 [Abstract] [Full Text] [Related]
2. Two antifungal thaumatin-like proteins from barley grain. Hejgaard J, Jacobsen S, Svendsen I. FEBS Lett; 1991 Oct 07; 291(1):127-31. PubMed ID: 1936240 [Abstract] [Full Text] [Related]
3. A novel pathogen- and wound-inducible tobacco (Nicotiana tabacum) protein with antifungal activity. Ponstein AS, Bres-Vloemans SA, Sela-Buurlage MB, van den Elzen PJ, Melchers LS, Cornelissen BJ. Plant Physiol; 1994 Jan 07; 104(1):109-18. PubMed ID: 8115541 [Abstract] [Full Text] [Related]
4. Isolation and partial characterization of two antifungal proteins from barley. Roberts WK, Selitrennikoff CP. Biochim Biophys Acta; 1986 Feb 19; 880(2-3):161-70. PubMed ID: 3942788 [Abstract] [Full Text] [Related]
5. Synergistic antifungal activity of two chitin-binding proteins from spindle tree (Euonymus europaeus L.). Van den Bergh KP, Rougé P, Proost P, Coosemans J, Krouglova T, Engelborghs Y, Peumans WJ, Van Damme EJ. Planta; 2004 Jun 19; 219(2):221-32. PubMed ID: 15048569 [Abstract] [Full Text] [Related]
6. [Purification and characterization of antifungal proteins in triticale seed]. Na B, Yu MK, Gong J, Wu J. Sheng Wu Gong Cheng Xue Bao; 2002 Sep 19; 18(5):561-5. PubMed ID: 12561199 [Abstract] [Full Text] [Related]
7. Comparative study of two GH19 chitinase-like proteins from Hevea brasiliensis, one exhibiting a novel carbohydrate-binding domain. Martínez-Caballero S, Cano-Sánchez P, Mares-Mejía I, Díaz-Sánchez AG, Macías-Rubalcava ML, Hermoso JA, Rodríguez-Romero A. FEBS J; 2014 Oct 19; 281(19):4535-54. PubMed ID: 25104038 [Abstract] [Full Text] [Related]
8. Cloning and overexpression of antifungal barley chitinase gene in Escherichia coli. Kirubakaran SI, Sakthivel N. Protein Expr Purif; 2007 Mar 19; 52(1):159-66. PubMed ID: 17029984 [Abstract] [Full Text] [Related]
9. Oat (Avena sativa) seed extract as an antifungal food preservative through the catalytic activity of a highly abundant class I chitinase. Sørensen HP, Madsen LS, Petersen J, Andersen JT, Hansen AM, Beck HC. Appl Biochem Biotechnol; 2010 Mar 19; 160(6):1573-84. PubMed ID: 19224400 [Abstract] [Full Text] [Related]
10. Binding of barley and wheat alpha-thionins to polysaccharides. Oita S, Ohnishi-Kameyama M, Nagata T. Biosci Biotechnol Biochem; 2000 May 19; 64(5):958-64. PubMed ID: 10879464 [Abstract] [Full Text] [Related]
11. Purification and characterisation of a novel chitinase from persimmon (Diospyros kaki) with antifungal activity. Zhang J, Kopparapu NK, Yan Q, Yang S, Jiang Z. Food Chem; 2013 Jun 01; 138(2-3):1225-32. PubMed ID: 23411236 [Abstract] [Full Text] [Related]
12. Tobacco and tomato PR proteins homologous to win and pro-hevein lack the "hevein" domain. Linthorst HJ, Danhash N, Brederode FT, Van Kan JA, De Wit PJ, Bol JF. Mol Plant Microbe Interact; 1991 Jun 01; 4(6):586-92. PubMed ID: 1804403 [Abstract] [Full Text] [Related]
13. Isolation of fungal cell wall degrading proteins from barley (Hordeum vulgare L.) leaves infected with Rhynchosporium secalis. Zareie R, Melanson DL, Murphy PJ. Mol Plant Microbe Interact; 2002 Oct 01; 15(10):1031-9. PubMed ID: 12437301 [Abstract] [Full Text] [Related]
14. Isolation and characterization of a 22 kDa protein with antifungal properties from maize seeds. Huynh QK, Borgmeyer JR, Zobel JF. Biochem Biophys Res Commun; 1992 Jan 15; 182(1):1-5. PubMed ID: 1731773 [Abstract] [Full Text] [Related]
15. A hevein-like protein and a class I chitinase with antifungal activity from leaves of the paper mulberry. Zhao M, Ma Y, Pan YH, Zhang CH, Yuan WX. Biomed Chromatogr; 2011 Aug 15; 25(8):908-12. PubMed ID: 21268047 [Abstract] [Full Text] [Related]
16. Rye inhibitors of animal alpha-amylases show different specificities, aggregative properties and IgE-binding capacities than their homologues from wheat and barley. García-Casado G, Sánchez-Monge R, López-Otín C, Salcedo G. Eur J Biochem; 1994 Sep 01; 224(2):525-31. PubMed ID: 7925368 [Abstract] [Full Text] [Related]
17. The N-terminal cysteine-rich domain of tobacco class I chitinase is essential for chitin binding but not for catalytic or antifungal activity. Iseli B, Boller T, Neuhaus JM. Plant Physiol; 1993 Sep 01; 103(1):221-6. PubMed ID: 8208848 [Abstract] [Full Text] [Related]
18. Barley pathogenesis-related proteins with fungal cell wall lytic activity inhibit the growth of yeasts. Grenier J, Potvin C, Asselin A. Plant Physiol; 1993 Dec 01; 103(4):1277-83. PubMed ID: 8290631 [Abstract] [Full Text] [Related]
19. Lipid transfer proteins (nsLTPs) from barley and maize leaves are potent inhibitors of bacterial and fungal plant pathogens. Molina A, Segura A, García-Olmedo F. FEBS Lett; 1993 Jan 25; 316(2):119-22. PubMed ID: 8420795 [Abstract] [Full Text] [Related]
20. Pathogenesis-related protein 4 is structurally homologous to the carboxy-terminal domains of hevein, Win-1 and Win-2. Friedrich L, Moyer M, Ward E, Ryals J. Mol Gen Genet; 1991 Nov 25; 230(1-2):113-9. PubMed ID: 1745223 [Abstract] [Full Text] [Related] Page: [Next] [New Search]