These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


278 related items for PubMed ID: 16442591

  • 1. Calcium polysulfide remediation of hexavalent chromium contamination from chromite ore processing residue.
    Graham MC, Farmer JG, Anderson P, Paterson E, Hillier S, Lumsdon DG, Bewley RJ.
    Sci Total Environ; 2006 Jul 01; 364(1-3):32-44. PubMed ID: 16442591
    [Abstract] [Full Text] [Related]

  • 2. Assessment of calcium polysulfide for the remediation of hexavalent chromium in chromite ore processing residue (COPR).
    Wazne M, Jagupilla SC, Moon DH, Jagupilla SC, Christodoulatos C, Kim MG.
    J Hazard Mater; 2007 May 17; 143(3):620-8. PubMed ID: 17276597
    [Abstract] [Full Text] [Related]

  • 3. Particle size and pH effects on remediation of chromite ore processing residue using calcium polysulfide (CaS5).
    Moon DH, Wazne M, Jagupilla SC, Christodoulatos C, Kim MG, Koutsospyros A.
    Sci Total Environ; 2008 Jul 25; 399(1-3):2-10. PubMed ID: 18486197
    [Abstract] [Full Text] [Related]

  • 4. The implications of integrated assessment and modelling studies for the future remediation of chromite ore processing residue disposal sites.
    Farmer JG, Paterson E, Bewley RJ, Geelhoed JS, Hillier S, Meeussen JC, Lumsdon DG, Thomas RP, Graham MC.
    Sci Total Environ; 2006 May 01; 360(1-3):90-7. PubMed ID: 16203026
    [Abstract] [Full Text] [Related]

  • 5. Calcium polysulfide treatment of Cr(VI)-contaminated soil.
    Chrysochoou M, Ferreira DR, Johnston CP.
    J Hazard Mater; 2010 Jul 15; 179(1-3):650-7. PubMed ID: 20381961
    [Abstract] [Full Text] [Related]

  • 6. Stabilization of chromium ore processing residue (COPR) with nanoscale iron particles.
    Cao J, Zhang WX.
    J Hazard Mater; 2006 May 20; 132(2-3):213-9. PubMed ID: 16621279
    [Abstract] [Full Text] [Related]

  • 7. Assessment of ferrous chloride and Portland cement for the remediation of chromite ore processing residue.
    Jagupilla SC, Wazne M, Moon DH.
    Chemosphere; 2015 Oct 20; 136():95-101. PubMed ID: 25966327
    [Abstract] [Full Text] [Related]

  • 8. Application of the Rietveld method to assess chromium(VI) speciation in chromite ore processing residue.
    Chrysochoou M, Dermatas D.
    J Hazard Mater; 2007 Mar 15; 141(2):370-7. PubMed ID: 16842911
    [Abstract] [Full Text] [Related]

  • 9. Effects of particle size and acid addition on the remediation of chromite ore processing residue using ferrous sulfate.
    Jagupilla SC, Moon DH, Wazne M, Christodoulatos C, Kim MG.
    J Hazard Mater; 2009 Aug 30; 168(1):121-8. PubMed ID: 19272700
    [Abstract] [Full Text] [Related]

  • 10. Chromium remediation or release? Effect of iron(II) sulfate addition on chromium(VI) leaching from columns of chromite ore processing residue.
    Geelhoed JS, Meeussen JC, Roe MJ, Hillier S, Thomas RP, Farmer JG, Paterson E.
    Environ Sci Technol; 2003 Jul 15; 37(14):3206-13. PubMed ID: 12901671
    [Abstract] [Full Text] [Related]

  • 11. A kinetic study of Cr(VI) reduction by calcium polysulfide.
    Chrysochoou M, Ting A.
    Sci Total Environ; 2011 Sep 01; 409(19):4072-7. PubMed ID: 21737123
    [Abstract] [Full Text] [Related]

  • 12. Mobilization of Cr(VI) from chromite ore processing residue through acid treatment.
    Tinjum JM, Benson CH, Edil TB.
    Sci Total Environ; 2008 Feb 25; 391(1):13-25. PubMed ID: 18067949
    [Abstract] [Full Text] [Related]

  • 13. A comparative evaluation of hexavalent chromium treatment in contaminated soil by calcium polysulfide and green-tea nanoscale zero-valent iron.
    Chrysochoou M, Johnston CP, Dahal G.
    J Hazard Mater; 2012 Jan 30; 201-202():33-42. PubMed ID: 22169240
    [Abstract] [Full Text] [Related]

  • 14. A new method for the treatment of chromite ore processing residues.
    Wang T, He M, Pan Q.
    J Hazard Mater; 2007 Oct 22; 149(2):440-4. PubMed ID: 17482759
    [Abstract] [Full Text] [Related]

  • 15. A study on the reduction of hexavalent chromium in aqueous solutions by vinasse.
    Altundogan HS, Ozer A, Tümen F.
    Environ Technol; 2004 Nov 22; 25(11):1257-63. PubMed ID: 15617440
    [Abstract] [Full Text] [Related]

  • 16. Reduction and immobilization of chromate in chromite ore processing residue with nanoscale zero-valent iron.
    Du J, Lu J, Wu Q, Jing C.
    J Hazard Mater; 2012 May 15; 215-216():152-8. PubMed ID: 22417394
    [Abstract] [Full Text] [Related]

  • 17. Determination of the bioaccessibility of chromium in Glasgow soil and the implications for human health risk assessment.
    Broadway A, Cave MR, Wragg J, Fordyce FM, Bewley RJ, Graham MC, Ngwenya BT, Farmer JG.
    Sci Total Environ; 2010 Dec 15; 409(2):267-77. PubMed ID: 21035835
    [Abstract] [Full Text] [Related]

  • 18. Chromium speciation and fractionation in ground and surface waters in the vicinity of chromite ore processing residue disposal sites.
    Farmer JG, Thomas RP, Graham MC, Geelhoed JS, Lumsdon DG, Paterson E.
    J Environ Monit; 2002 Apr 15; 4(2):235-43. PubMed ID: 11993762
    [Abstract] [Full Text] [Related]

  • 19. Chromium removal from ion-exchange waste brines with calcium polysulfide.
    Pakzadeh B, Batista JR.
    Water Res; 2011 May 15; 45(10):3055-64. PubMed ID: 21497365
    [Abstract] [Full Text] [Related]

  • 20. Role of quantitative mineralogical analysis in the investigation of sites contaminated by chromite ore processing residue.
    Hillier S, Roe MJ, Geelhoed JS, Fraser AR, Farmer JG, Paterson E.
    Sci Total Environ; 2003 Jun 01; 308(1-3):195-210. PubMed ID: 12738213
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 14.