These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
430 related items for PubMed ID: 16449233
1. Compensation for PSII photoinactivation by regulated non-photochemical dissipation influences the impact of photoinactivation on electron transport and CO2 assimilation. Kornyeyev D, Logan BA, Tissue DT, Allen RD, Holaday AS. Plant Cell Physiol; 2006 Apr; 47(4):437-46. PubMed ID: 16449233 [Abstract] [Full Text] [Related]
2. Effects of blue light deficiency on acclimation of light energy partitioning in PSII and CO2 assimilation capacity to high irradiance in spinach leaves. Matsuda R, Ohashi-Kaneko K, Fujiwara K, Kurata K. Plant Cell Physiol; 2008 Apr; 49(4):664-70. PubMed ID: 18349045 [Abstract] [Full Text] [Related]
3. Enhancement of cyclic electron flow around PSI at high light and its contribution to the induction of non-photochemical quenching of chl fluorescence in intact leaves of tobacco plants. Miyake C, Shinzaki Y, Miyata M, Tomizawa K. Plant Cell Physiol; 2004 Oct; 45(10):1426-33. PubMed ID: 15564526 [Abstract] [Full Text] [Related]
4. Arabidopsis plants lacking PsbS protein possess photoprotective energy dissipation. Johnson MP, Ruban AV. Plant J; 2010 Jan; 61(2):283-9. PubMed ID: 19843315 [Abstract] [Full Text] [Related]
5. Effects of light quality on CO2 assimilation, chlorophyll-fluorescence quenching, expression of Calvin cycle genes and carbohydrate accumulation in Cucumis sativus. Wang H, Gu M, Cui J, Shi K, Zhou Y, Yu J. J Photochem Photobiol B; 2009 Jul 17; 96(1):30-7. PubMed ID: 19410482 [Abstract] [Full Text] [Related]
6. CO2 response of cyclic electron flow around PSI (CEF-PSI) in tobacco leaves--relative electron fluxes through PSI and PSII determine the magnitude of non-photochemical quenching (NPQ) of Chl fluorescence. Miyake C, Miyata M, Shinzaki Y, Tomizawa K. Plant Cell Physiol; 2005 Apr 17; 46(4):629-37. PubMed ID: 15701657 [Abstract] [Full Text] [Related]
7. The slow reversibility of photosystem II thermal energy dissipation on transfer from high to low light may cause large losses in carbon gain by crop canopies: a theoretical analysis. Zhu XG, Ort DR, Whitmarsh J, Long SP. J Exp Bot; 2004 May 17; 55(400):1167-75. PubMed ID: 15133059 [Abstract] [Full Text] [Related]
8. The involvement of dual mechanisms of photoinactivation of photosystem II in Capsicum annuum L. Plants. Oguchi R, Terashima I, Chow WS. Plant Cell Physiol; 2009 Oct 17; 50(10):1815-25. PubMed ID: 19737797 [Abstract] [Full Text] [Related]
9. Photosystem II proteins PsbL and PsbJ regulate electron flow to the plastoquinone pool. Ohad I, Dal Bosco C, Herrmann RG, Meurer J. Biochemistry; 2004 Mar 02; 43(8):2297-308. PubMed ID: 14979726 [Abstract] [Full Text] [Related]
10. Effect of PGR5 impairment on photosynthesis and growth in Arabidopsis thaliana. Munekage YN, Genty B, Peltier G. Plant Cell Physiol; 2008 Nov 02; 49(11):1688-98. PubMed ID: 18799484 [Abstract] [Full Text] [Related]
11. The photosynthetic properties of rice leaves treated with low temperature and high irradiance. Hirotsu N, Makino A, Yokota S, Mae T. Plant Cell Physiol; 2005 Aug 02; 46(8):1377-83. PubMed ID: 15951567 [Abstract] [Full Text] [Related]
12. Action spectrum of photoinhibition in leaves of wild type and npq1-2 and npq4-1 mutants of Arabidopsis thaliana. Sarvikas P, Hakala M, Pätsikkä E, Tyystjärvi T, Tyystjärvi E. Plant Cell Physiol; 2006 Mar 02; 47(3):391-400. PubMed ID: 16415063 [Abstract] [Full Text] [Related]
13. Cold stress effects on PSI photochemistry in Zea mays: differential increase of FQR-dependent cyclic electron flow and functional implications. Savitch LV, Ivanov AG, Gudynaite-Savitch L, Huner NP, Simmonds J. Plant Cell Physiol; 2011 Jun 02; 52(6):1042-54. PubMed ID: 21546369 [Abstract] [Full Text] [Related]
14. The mitochondrial CMSII mutation of Nicotiana sylvestris impairs adjustment of photosynthetic carbon assimilation to higher growth irradiance. Priault P, Fresneau C, Noctor G, De Paepe R, Cornic G, Streb P. J Exp Bot; 2006 Jun 02; 57(9):2075-85. PubMed ID: 16714313 [Abstract] [Full Text] [Related]
15. Non-photochemical loss in PSII in high- and low-light-grown leaves of Vicia faba quantified by several fluorescence parameters including L(NP), F0/F'm, a novel parameter. Stefanov D, Terashima I. Physiol Plant; 2008 Jun 02; 133(2):327-38. PubMed ID: 18346081 [Abstract] [Full Text] [Related]
16. Processes contributing to photoprotection of grapevine leaves illuminated at low temperature. Hendrickson L, Förster B, Furbank RT, Chow WS. Physiol Plant; 2004 Jun 02; 121(2):272-281. PubMed ID: 15153195 [Abstract] [Full Text] [Related]
17. Assessing the relationship between respiratory acclimation to the cold and photosystem II redox poise in Arabidopsis thaliana. Armstrong AF, Wardlaw KD, Atkin OK. Plant Cell Environ; 2007 Dec 02; 30(12):1513-22. PubMed ID: 17953650 [Abstract] [Full Text] [Related]
18. Remodeling of the major light-harvesting antenna protein of PSII protects the young leaves of barley (Hordeum vulgare L.) from photoinhibition under prolonged iron deficiency. Saito A, Iino T, Sonoike K, Miwa E, Higuchi K. Plant Cell Physiol; 2010 Dec 02; 51(12):2013-30. PubMed ID: 20980268 [Abstract] [Full Text] [Related]
19. Repetitive light pulse-induced photoinhibition of photosystem I severely affects CO2 assimilation and photoprotection in wheat leaves. Zivcak M, Brestic M, Kunderlikova K, Sytar O, Allakhverdiev SI. Photosynth Res; 2015 Dec 02; 126(2-3):449-63. PubMed ID: 25829027 [Abstract] [Full Text] [Related]
20. Acclimation of tobacco leaves to high light intensity drives the plastoquinone oxidation system--relationship among the fraction of open PSII centers, non-photochemical quenching of Chl fluorescence and the maximum quantum yield of PSII in the dark. Miyake C, Amako K, Shiraishi N, Sugimoto T. Plant Cell Physiol; 2009 Apr 02; 50(4):730-43. PubMed ID: 19251745 [Abstract] [Full Text] [Related] Page: [Next] [New Search]