These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Tissue-specific expression of SV40 in tumors associated with the Li-Fraumeni syndrome. Malkin D, Chilton-MacNeill S, Meister LA, Sexsmith E, Diller L, Garcea RL. Oncogene; 2001 Jul 27; 20(33):4441-9. PubMed ID: 11494139 [Abstract] [Full Text] [Related]
3. Cell cycle arrest defect in Li-Fraumeni Syndrome: a mechanism of cancer predisposition? Williams KJ, Boyle JM, Birch JM, Norton JD, Scott D. Oncogene; 1997 Jan 23; 14(3):277-82. PubMed ID: 9018113 [Abstract] [Full Text] [Related]
4. Identification and characterization of potential human carcinogens using B6.129tm1Trp53 heterozygous null mice and loss of heterozygosity at the Trp53 locus. French JE. IARC Sci Publ; 2004 Jan 23; (157):271-87. PubMed ID: 15055301 [Abstract] [Full Text] [Related]
6. Several mutant p53 proteins detected in cancer-prone families with Li-Fraumeni syndrome exhibit transdominant effects on the biochemical properties of the wild-type p53. Srivastava S, Wang S, Tong YA, Pirollo K, Chang EH. Oncogene; 1993 Sep 23; 8(9):2449-56. PubMed ID: 8361758 [Abstract] [Full Text] [Related]
7. p53 compound heterozygosity in a severely affected child with Li-Fraumeni syndrome. Quesnel S, Verselis S, Portwine C, Garber J, White M, Feunteun J, Malkin D, Li FP. Oncogene; 1999 Jul 08; 18(27):3970-8. PubMed ID: 10435620 [Abstract] [Full Text] [Related]
9. Role of transgenic mice in identification and characterization of tumour suppressor genes. Sharan SK, Bradley A. Cancer Surv; 1995 Jul 08; 25():143-59. PubMed ID: 8718516 [Abstract] [Full Text] [Related]
12. Mutant p53 gain of oncogenic function: in vivo evidence, mechanism of action and its clinical implications. Adhikari AS, Iwakuma T. Fukuoka Igaku Zasshi; 2009 Jun 08; 100(6):217-28. PubMed ID: 19670804 [Abstract] [Full Text] [Related]
13. Down-regulation of survivin by ultraviolet C radiation is dependent on p53 and results in G(2)-M arrest in A549 cells. Ikeda M, Okamoto I, Tamura K, Satoh T, Yonesaka K, Fukuoka M, Nakagawa K. Cancer Lett; 2007 Apr 18; 248(2):292-8. PubMed ID: 16959403 [Abstract] [Full Text] [Related]
14. Sirt7 increases stress resistance of cardiomyocytes and prevents apoptosis and inflammatory cardiomyopathy in mice. Vakhrusheva O, Smolka C, Gajawada P, Kostin S, Boettger T, Kubin T, Braun T, Bober E. Circ Res; 2008 Mar 28; 102(6):703-10. PubMed ID: 18239138 [Abstract] [Full Text] [Related]
15. Caveolin-1 controls cell proliferation and cell death by suppressing expression of the inhibitor of apoptosis protein survivin. Torres VA, Tapia JC, Rodríguez DA, Párraga M, Lisboa P, Montoya M, Leyton L, Quest AF. J Cell Sci; 2006 May 01; 119(Pt 9):1812-23. PubMed ID: 16608879 [Abstract] [Full Text] [Related]
16. Loss of p53 expression correlates with metastatic phenotype and transcriptional profile in a new mouse model of head and neck cancer. Ku TK, Nguyen DC, Karaman M, Gill P, Hacia JG, Crowe DL. Mol Cancer Res; 2007 Apr 01; 5(4):351-62. PubMed ID: 17426250 [Abstract] [Full Text] [Related]
17. Negative regulation of chemokine receptor CXCR4 by tumor suppressor p53 in breast cancer cells: implications of p53 mutation or isoform expression on breast cancer cell invasion. Mehta SA, Christopherson KW, Bhat-Nakshatri P, Goulet RJ, Broxmeyer HE, Kopelovich L, Nakshatri H. Oncogene; 2007 May 17; 26(23):3329-37. PubMed ID: 17130833 [Abstract] [Full Text] [Related]
18. Silent information regulator 2 (SIRT1) attenuates oxidative stress-induced mesangial cell apoptosis via p53 deacetylation. Kume S, Haneda M, Kanasaki K, Sugimoto T, Araki S, Isono M, Isshiki K, Uzu T, Kashiwagi A, Koya D. Free Radic Biol Med; 2006 Jun 15; 40(12):2175-82. PubMed ID: 16785031 [Abstract] [Full Text] [Related]
19. Insights into aging obtained from p53 mutant mouse models. Dumble M, Gatza C, Tyner S, Venkatachalam S, Donehower LA. Ann N Y Acad Sci; 2004 Jun 15; 1019():171-7. PubMed ID: 15247009 [Abstract] [Full Text] [Related]