These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
486 related items for PubMed ID: 16452972
1. Replication fork reactivation downstream of a blocked nascent leading strand. Heller RC, Marians KJ. Nature; 2006 Feb 02; 439(7076):557-62. PubMed ID: 16452972 [Abstract] [Full Text] [Related]
2. Rescue of stalled replication forks by RecG: simultaneous translocation on the leading and lagging strand templates supports an active DNA unwinding model of fork reversal and Holliday junction formation. McGlynn P, Lloyd RG. Proc Natl Acad Sci U S A; 2001 Jul 17; 98(15):8227-34. PubMed ID: 11459957 [Abstract] [Full Text] [Related]
3. Single-molecule studies of fork dynamics in Escherichia coli DNA replication. Tanner NA, Hamdan SM, Jergic S, Loscha KV, Schaeffer PM, Dixon NE, van Oijen AM. Nat Struct Mol Biol; 2008 Feb 17; 15(2):170-6. PubMed ID: 18223657 [Abstract] [Full Text] [Related]
9. Regulation of bacterial priming and daughter strand synthesis through helicase-primase interactions. Corn JE, Berger JM. Nucleic Acids Res; 2006 Oct 14; 34(15):4082-8. PubMed ID: 16935873 [Abstract] [Full Text] [Related]
10. RecQ and RecJ process blocked replication forks prior to the resumption of replication in UV-irradiated Escherichia coli. Courcelle J, Hanawalt PC. Mol Gen Genet; 1999 Oct 14; 262(3):543-51. PubMed ID: 10589843 [Abstract] [Full Text] [Related]
11. Identification of a domain of Escherichia coli primase required for functional interaction with the DnaB helicase at the replication fork. Tougu K, Peng H, Marians KJ. J Biol Chem; 1994 Feb 11; 269(6):4675-82. PubMed ID: 8308039 [Abstract] [Full Text] [Related]
12. Identification of a region of Escherichia coli DnaB required for functional interaction with DnaG at the replication fork. Chang P, Marians KJ. J Biol Chem; 2000 Aug 25; 275(34):26187-95. PubMed ID: 10833513 [Abstract] [Full Text] [Related]
13. Escherichia coli PriA helicase: fork binding orients the helicase to unwind the lagging strand side of arrested replication forks. Jones JM, Nakai H. J Mol Biol; 2001 Oct 05; 312(5):935-47. PubMed ID: 11580240 [Abstract] [Full Text] [Related]
14. Mechanism and stoichiometry of interaction of DnaG primase with DnaB helicase of Escherichia coli in RNA primer synthesis. Mitkova AV, Khopde SM, Biswas SB. J Biol Chem; 2003 Dec 26; 278(52):52253-61. PubMed ID: 14557266 [Abstract] [Full Text] [Related]
15. Unwinding of the nascent lagging strand by Rep and PriA enables the direct restart of stalled replication forks. Heller RC, Marians KJ. J Biol Chem; 2005 Oct 07; 280(40):34143-51. PubMed ID: 16079128 [Abstract] [Full Text] [Related]
16. Regression of replication forks stalled by leading-strand template damage: I. Both RecG and RuvAB catalyze regression, but RuvC cleaves the holliday junctions formed by RecG preferentially. Gupta S, Yeeles JT, Marians KJ. J Biol Chem; 2014 Oct 10; 289(41):28376-87. PubMed ID: 25138216 [Abstract] [Full Text] [Related]
17. Non-replicative helicases at the replication fork. Heller RC, Marians KJ. DNA Repair (Amst); 2007 Jul 01; 6(7):945-52. PubMed ID: 17382604 [Abstract] [Full Text] [Related]
18. Modulation of RNA polymerase by (p)ppGpp reveals a RecG-dependent mechanism for replication fork progression. McGlynn P, Lloyd RG. Cell; 2000 Mar 31; 101(1):35-45. PubMed ID: 10778854 [Abstract] [Full Text] [Related]
19. Coordinated leading- and lagging-strand synthesis at the Escherichia coli DNA replication fork. I. Multiple effectors act to modulate Okazaki fragment size. Wu CA, Zechner EL, Marians KJ. J Biol Chem; 1992 Feb 25; 267(6):4030-44. PubMed ID: 1740451 [Abstract] [Full Text] [Related]
20. Cells defective for replication restart undergo replication fork reversal. Grompone G, Ehrlich D, Michel B. EMBO Rep; 2004 Jun 25; 5(6):607-12. PubMed ID: 15167889 [Abstract] [Full Text] [Related] Page: [Next] [New Search]