These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


424 related items for PubMed ID: 16459144

  • 1. Comparison of different biological methods for the assessment of ecotoxicological risks.
    Fenske C, Daeschlein G, Günther B, Knauer A, Rudolph P, Schwahn C, Adrian V, von Woedtke T, Rossberg H, Jülich WD, Kramer A.
    Int J Hyg Environ Health; 2006 May; 209(3):275-84. PubMed ID: 16459144
    [Abstract] [Full Text] [Related]

  • 2. "Electro-fishing" in the lab: a new method to detect acute effects of heavy metals and organic pollutants in invertebrate indicator organisms.
    Fenske C, Günther B.
    Int J Hyg Environ Health; 2001 Nov; 204(2-3):157-63. PubMed ID: 11759159
    [Abstract] [Full Text] [Related]

  • 3. Heavy metals in the nase, Chondrostoma nasus (L. 1758), and its intestinal parasite Caryophyllaeus laticeps (Pallas 1781) from Austrian rivers: bioindicative aspects.
    Jirsa F, Leodolter-Dvorak M, Krachler R, Frank C.
    Arch Environ Contam Toxicol; 2008 Nov; 55(4):619-26. PubMed ID: 18347839
    [Abstract] [Full Text] [Related]

  • 4. Bioavailability of heavy metals monitoring water, sediments and fish species from a polluted estuary.
    Vicente-Martorell JJ, Galindo-Riaño MD, García-Vargas M, Granado-Castro MD.
    J Hazard Mater; 2009 Mar 15; 162(2-3):823-36. PubMed ID: 18620807
    [Abstract] [Full Text] [Related]

  • 5. Acute toxicities of four metals on the early life stages of the crab Chasmagnathus granulata from Bahía Blanca estuary, Argentina.
    Ferrer L, Andrade S, Asteasuain R, Marcovecchio J.
    Ecotoxicol Environ Saf; 2006 Oct 15; 65(2):209-17. PubMed ID: 16098589
    [Abstract] [Full Text] [Related]

  • 6. Comparative evaluation of the cytotoxicity sensitivity of six fish cell lines to four heavy metals in vitro.
    Tan F, Wang M, Wang W, Lu Y.
    Toxicol In Vitro; 2008 Feb 15; 22(1):164-70. PubMed ID: 17931828
    [Abstract] [Full Text] [Related]

  • 7. Comparison of bioluminescent dinoflagellate (QwikLite) and bacterial (Microtox) rapid bioassays for the detection of metal and ammonia toxicity.
    Rosen G, Osorio-Robayo A, Rivera-Duarte I, Lapota D.
    Arch Environ Contam Toxicol; 2008 May 15; 54(4):606-11. PubMed ID: 18026774
    [Abstract] [Full Text] [Related]

  • 8. Toxicity and removal of heavy metals (cadmium, copper, and zinc) by Lemna gibba.
    Megateli S, Semsari S, Couderchet M.
    Ecotoxicol Environ Saf; 2009 Sep 15; 72(6):1774-80. PubMed ID: 19505721
    [Abstract] [Full Text] [Related]

  • 9. Historical perspective of heavy metals contamination (Cd, Cr, Cu, Hg, Pb, Zn) in the Seine River basin (France) following a DPSIR approach (1950-2005).
    Meybeck M, Lestel L, Bonté P, Moilleron R, Colin JL, Rousselot O, Hervé D, de Pontevès C, Grosbois C, Thévenot DR.
    Sci Total Environ; 2007 Apr 01; 375(1-3):204-31. PubMed ID: 17306338
    [Abstract] [Full Text] [Related]

  • 10. Concentrations of metals in water, sediment, biofilm, benthic macroinvertebrates, and fish in the Boulder River watershed, Montana, and the role of colloids in metal uptake.
    Farag AM, Nimick DA, Kimball BA, Church SE, Harper DD, Brumbaugh WG.
    Arch Environ Contam Toxicol; 2007 Apr 01; 52(3):397-409. PubMed ID: 17219028
    [Abstract] [Full Text] [Related]

  • 11. Toxicity of the 13 priority pollutant metals to Vibrio fisheri in the Microtox chronic toxicity test.
    Hsieh CY, Tsai MH, Ryan DK, Pancorbo OC.
    Sci Total Environ; 2004 Mar 05; 320(1):37-50. PubMed ID: 14987925
    [Abstract] [Full Text] [Related]

  • 12. Heavy metals (Ni, Cr, Cu) in the Karoon waterway river, Iran.
    Diagomanolin V, Farhang M, Ghazi-Khansari M, Jafarzadeh N.
    Toxicol Lett; 2004 Jun 15; 151(1):63-8. PubMed ID: 15177641
    [Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14. Heavy metals in zooplankton from the Southern Baltic.
    Pempkowiak J, Walkusz-Miotk J, Bełdowski J, Walkusz W.
    Chemosphere; 2006 Mar 15; 62(10):1697-708. PubMed ID: 16139327
    [Abstract] [Full Text] [Related]

  • 15. Evaluation of the Chemcatcher and DGT passive samplers for monitoring metals with highly fluctuating water concentrations.
    Allan IJ, Knutsson J, Guigues N, Mills GA, Fouillac AM, Greenwood R.
    J Environ Monit; 2007 Jul 15; 9(7):672-81. PubMed ID: 17607387
    [Abstract] [Full Text] [Related]

  • 16. Characterisation of heavy metal discharge into the Ria of Huelva.
    Sainz A, Grande JA, de la Torre ML.
    Environ Int; 2004 Jun 15; 30(4):557-66. PubMed ID: 15031016
    [Abstract] [Full Text] [Related]

  • 17. Validation of an in vitro cytotoxicity test for four heavy metals using cell lines derived from a green sea turtle (Chelonia mydas).
    Tan F, Wang M, Wang W, Alonso Aguirre A, Lu Y.
    Cell Biol Toxicol; 2010 Jun 15; 26(3):255-63. PubMed ID: 19629729
    [Abstract] [Full Text] [Related]

  • 18. The use of the red swamp crayfish (Procambarus clarkii, Girard) as indicator of the bioavailability of heavy metals in environmental monitoring in the River Guadiamar (SW, Spain).
    Alcorlo P, Otero M, Crehuet M, Baltanás A, Montes C.
    Sci Total Environ; 2006 Jul 31; 366(1):380-90. PubMed ID: 16546239
    [Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 22.