These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


312 related items for PubMed ID: 16459325

  • 1. A role for heterocellular coupling and EETs in dilation of rat cremaster arteries.
    McSherry IN, Sandow SL, Campbell WB, Falck JR, Hill MA, Dora KA.
    Microcirculation; 2006 Mar; 13(2):119-30. PubMed ID: 16459325
    [Abstract] [Full Text] [Related]

  • 2. Endothelium-dependent vasodilation in myogenically active mouse skeletal muscle arterioles: role of EDH and K(+) channels.
    Potocnik SJ, McSherry I, Ding H, Murphy TV, Kotecha N, Dora KA, Yuill KH, Triggle CR, Hill MA.
    Microcirculation; 2009 Jul; 16(5):377-90; 1 p following 390. PubMed ID: 19424929
    [Abstract] [Full Text] [Related]

  • 3. Obesity up-regulates intermediate conductance calcium-activated potassium channels and myoendothelial gap junctions to maintain endothelial vasodilator function.
    Chadha PS, Haddock RE, Howitt L, Morris MJ, Murphy TV, Grayson TH, Sandow SL.
    J Pharmacol Exp Ther; 2010 Nov; 335(2):284-93. PubMed ID: 20671071
    [Abstract] [Full Text] [Related]

  • 4. Endothelial cell Ca2+ increases are independent of membrane potential in pressurized rat mesenteric arteries.
    McSherry IN, Spitaler MM, Takano H, Dora KA.
    Cell Calcium; 2005 Jul; 38(1):23-33. PubMed ID: 15907999
    [Abstract] [Full Text] [Related]

  • 5. Mediation of EDHF-induced reduction of smooth muscle [Ca(2+)](i) and arteriolar dilation by K(+) channels, 5,6-EET, and gap junctions.
    Ungvari Z, Koller A.
    Microcirculation; 2001 Aug; 8(4):265-74. PubMed ID: 11528534
    [Abstract] [Full Text] [Related]

  • 6. Heterogeneity of endothelium-dependent vasodilation in pressurized cerebral and small mesenteric resistance arteries of the rat.
    Lagaud GJ, Skarsgard PL, Laher I, van Breemen C.
    J Pharmacol Exp Ther; 1999 Aug; 290(2):832-9. PubMed ID: 10411599
    [Abstract] [Full Text] [Related]

  • 7. Role of SK(Ca) and IK(Ca) in endothelium-dependent hyperpolarizations of the guinea-pig isolated carotid artery.
    Gluais P, Edwards G, Weston AH, Falck JR, Vanhoutte PM, Félétou M.
    Br J Pharmacol; 2005 Feb; 144(4):477-85. PubMed ID: 15655533
    [Abstract] [Full Text] [Related]

  • 8. Impaired endothelium-derived hyperpolarizing factor-mediated dilations and increased blood pressure in mice deficient of the intermediate-conductance Ca2+-activated K+ channel.
    Si H, Heyken WT, Wölfle SE, Tysiac M, Schubert R, Grgic I, Vilianovich L, Giebing G, Maier T, Gross V, Bader M, de Wit C, Hoyer J, Köhler R.
    Circ Res; 2006 Sep 01; 99(5):537-44. PubMed ID: 16873714
    [Abstract] [Full Text] [Related]

  • 9. Protease-activated receptor 2 and bradykinin-mediated vasodilation in the cerebral arteries of stroke-prone rats.
    Smeda JS, McGuire JJ, Daneshtalab N.
    Peptides; 2010 Feb 01; 31(2):227-37. PubMed ID: 19954757
    [Abstract] [Full Text] [Related]

  • 10. K+ is an endothelium-derived hyperpolarizing factor in rat arteries.
    Edwards G, Dora KA, Gardener MJ, Garland CJ, Weston AH.
    Nature; 1998 Nov 19; 396(6708):269-72. PubMed ID: 9834033
    [Abstract] [Full Text] [Related]

  • 11. Cerebrovascular vasodilation to extraluminal acidosis occurs via combined activation of ATP-sensitive and Ca2+-activated potassium channels.
    Lindauer U, Vogt J, Schuh-Hofer S, Dreier JP, Dirnagl U.
    J Cereb Blood Flow Metab; 2003 Oct 19; 23(10):1227-38. PubMed ID: 14526233
    [Abstract] [Full Text] [Related]

  • 12. Effects of methyl beta-cyclodextrin on EDHF responses in pig and rat arteries; association between SK(Ca) channels and caveolin-rich domains.
    Absi M, Burnham MP, Weston AH, Harno E, Rogers M, Edwards G.
    Br J Pharmacol; 2007 Jun 19; 151(3):332-40. PubMed ID: 17450174
    [Abstract] [Full Text] [Related]

  • 13. Effects of inhibitors of small- and intermediate-conductance calcium-activated potassium channels, inwardly-rectifying potassium channels and Na(+)/K(+) ATPase on EDHF relaxations in the rat hepatic artery.
    Andersson DA, Zygmunt PM, Movahed P, Andersson TL, Högestätt ED.
    Br J Pharmacol; 2000 Apr 19; 129(7):1490-6. PubMed ID: 10742306
    [Abstract] [Full Text] [Related]

  • 14. The role of NO-cGMP pathway and potassium channels on the relaxation induced by clonidine in the rat mesenteric arterial bed.
    Pimentel AM, Costa CA, Carvalho LC, Brandão RM, Rangel BM, Tano T, Soares de Moura R, Resende AC.
    Vascul Pharmacol; 2007 May 19; 46(5):353-9. PubMed ID: 17258511
    [Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17. Bradykinin-induced, endothelium-dependent responses in porcine coronary arteries: involvement of potassium channel activation and epoxyeicosatrienoic acids.
    Weston AH, Félétou M, Vanhoutte PM, Falck JR, Campbell WB, Edwards G.
    Br J Pharmacol; 2005 Jul 19; 145(6):775-84. PubMed ID: 15895105
    [Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19. Selective blockade of endothelial Ca2+-activated small- and intermediate-conductance K+-channels suppresses EDHF-mediated vasodilation.
    Eichler I, Wibawa J, Grgic I, Knorr A, Brakemeier S, Pries AR, Hoyer J, Köhler R.
    Br J Pharmacol; 2003 Feb 19; 138(4):594-601. PubMed ID: 12598413
    [Abstract] [Full Text] [Related]

  • 20. Endothelial K(ca) channels mediate flow-dependent dilation of arterioles of skeletal muscle and mesentery.
    Sun D, Huang A, Koller A, Kaley G.
    Microvasc Res; 2001 Mar 19; 61(2):179-86. PubMed ID: 11254397
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 16.