These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


347 related items for PubMed ID: 16464091

  • 1. Application of Badger's rule to heme and non-heme iron-oxygen bonds: an examination of ferryl protonation states.
    Green MT.
    J Am Chem Soc; 2006 Feb 15; 128(6):1902-6. PubMed ID: 16464091
    [Abstract] [Full Text] [Related]

  • 2. On the status of ferryl protonation.
    Behan RK, Green MT.
    J Inorg Biochem; 2006 Apr 15; 100(4):448-59. PubMed ID: 16500711
    [Abstract] [Full Text] [Related]

  • 3. Heme enzymes. Neutron cryo-crystallography captures the protonation state of ferryl heme in a peroxidase.
    Casadei CM, Gumiero A, Metcalfe CL, Murphy EJ, Basran J, Concilio MG, Teixeira SC, Schrader TE, Fielding AJ, Ostermann A, Blakeley MP, Raven EL, Moody PC.
    Science; 2014 Jul 11; 345(6193):193-7. PubMed ID: 25013070
    [Abstract] [Full Text] [Related]

  • 4. EPR and ENDOR studies of cryoreduced compounds II of peroxidases and myoglobin. Proton-coupled electron transfer and protonation status of ferryl hemes.
    Davydov R, Osborne RL, Kim SH, Dawson JH, Hoffman BM.
    Biochemistry; 2008 May 06; 47(18):5147-55. PubMed ID: 18407661
    [Abstract] [Full Text] [Related]

  • 5. Resonance Raman spectroscopy of oxoiron(IV) porphyrin pi-cation radical and oxoiron(IV) hemes in peroxidase intermediates.
    Terner J, Palaniappan V, Gold A, Weiss R, Fitzgerald MM, Sullivan AM, Hosten CM.
    J Inorg Biochem; 2006 Apr 06; 100(4):480-501. PubMed ID: 16513173
    [Abstract] [Full Text] [Related]

  • 6. Red-excitation resonance Raman analysis of the nu(Fe=O) mode of ferryl-oxo hemoproteins.
    Ikemura K, Mukai M, Shimada H, Tsukihara T, Yamaguchi S, Shinzawa-Itoh K, Yoshikawa S, Ogura T.
    J Am Chem Soc; 2008 Nov 05; 130(44):14384-5. PubMed ID: 18847201
    [Abstract] [Full Text] [Related]

  • 7. Differences in and comparison of the catalytic properties of heme and non-heme enzymes with a central oxo-iron group.
    de Visser SP.
    Angew Chem Int Ed Engl; 2006 Mar 03; 45(11):1790-3. PubMed ID: 16470900
    [No Abstract] [Full Text] [Related]

  • 8. Sulfoxidation mechanisms catalyzed by cytochrome P450 and horseradish peroxidase models: spin selection induced by the ligand.
    Kumar D, de Visser SP, Sharma PK, Hirao H, Shaik S.
    Biochemistry; 2005 Jun 07; 44(22):8148-58. PubMed ID: 15924434
    [Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11. The structure-function relationship and reduction potentials of high oxidation states of myoglobin and peroxidase.
    He B, Sinclair R, Copeland BR, Makino R, Powers LS, Yamazaki I.
    Biochemistry; 1996 Feb 20; 35(7):2413-20. PubMed ID: 8652584
    [Abstract] [Full Text] [Related]

  • 12. Structures of the high-valent metal-ion haem-oxygen intermediates in peroxidases, oxygenases and catalases.
    Hersleth HP, Ryde U, Rydberg P, Görbitz CH, Andersson KK.
    J Inorg Biochem; 2006 Apr 20; 100(4):460-76. PubMed ID: 16510192
    [Abstract] [Full Text] [Related]

  • 13. Propene activation by the oxo-iron active species of taurine/alpha-ketoglutarate dioxygenase (TauD) enzyme. How does the catalysis compare to heme-enzymes?
    de Visser SP.
    J Am Chem Soc; 2006 Aug 02; 128(30):9813-24. PubMed ID: 16866538
    [Abstract] [Full Text] [Related]

  • 14. Mössbauer identification of a protonated ferryl species in catalase from Proteus mirabilis: density functional calculations on related models.
    Horner O, Oddou JL, Mouesca JM, Jouve HM.
    J Inorg Biochem; 2006 Apr 02; 100(4):477-9. PubMed ID: 16442627
    [Abstract] [Full Text] [Related]

  • 15. Electronic structure of six-coordinate iron(III)-porphyrin NO adducts: the elusive iron(III)-NO(radical) state and its influence on the properties of these complexes.
    Praneeth VK, Paulat F, Berto TC, George SD, Näther C, Sulok CD, Lehnert N.
    J Am Chem Soc; 2008 Nov 19; 130(46):15288-303. PubMed ID: 18942830
    [Abstract] [Full Text] [Related]

  • 16. High-valent iron(IV)-oxo complexes of heme and non-heme ligands in oxygenation reactions.
    Nam W.
    Acc Chem Res; 2007 Jul 19; 40(7):522-31. PubMed ID: 17469792
    [Abstract] [Full Text] [Related]

  • 17. Assigning vibrational spectra of ferryl-oxo intermediates of cytochrome C oxidase by periodic orbits and molecular dynamics.
    Daskalakis V, Farantos SC, Varotsis C.
    J Am Chem Soc; 2008 Sep 17; 130(37):12385-93. PubMed ID: 18712866
    [Abstract] [Full Text] [Related]

  • 18. A theoretical study of myoglobin working as a nitric oxide scavenger.
    Blomberg LM, Blomberg MR, Siegbahn PE.
    J Biol Inorg Chem; 2004 Dec 17; 9(8):923-35. PubMed ID: 15452775
    [Abstract] [Full Text] [Related]

  • 19. Nature of the Fe-O2 bonding in oxy-myoglobin: effect of the protein.
    Chen H, Ikeda-Saito M, Shaik S.
    J Am Chem Soc; 2008 Nov 05; 130(44):14778-90. PubMed ID: 18847206
    [Abstract] [Full Text] [Related]

  • 20. Structure and mechanism in the bacterial dihaem cytochrome c peroxidases.
    Pettigrew GW, Echalier A, Pauleta SR.
    J Inorg Biochem; 2006 Apr 05; 100(4):551-67. PubMed ID: 16434100
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 18.