These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
265 related items for PubMed ID: 16466156
1. Gait of stance control orthosis users: the dynamic knee brace system. Irby SE, Bernhardt KA, Kaufman KR. Prosthet Orthot Int; 2005 Dec; 29(3):269-82. PubMed ID: 16466156 [Abstract] [Full Text] [Related]
2. Gait changes over time in stance control orthosis users. Irby SE, Bernhardt KA, Kaufman KR. Prosthet Orthot Int; 2007 Dec; 31(4):353-61. PubMed ID: 17852777 [Abstract] [Full Text] [Related]
3. Preliminary kinematic evaluation of a new stance-control knee-ankle-foot orthosis. Yakimovich T, Lemaire ED, Kofman J. Clin Biomech (Bristol); 2006 Dec; 21(10):1081-9. PubMed ID: 16949186 [Abstract] [Full Text] [Related]
4. A functional comparison of conventional knee-ankle-foot orthoses and a microprocessor-controlled leg orthosis system based on biomechanical parameters. Schmalz T, Pröbsting E, Auberger R, Siewert G. Prosthet Orthot Int; 2016 Apr; 40(2):277-86. PubMed ID: 25249381 [Abstract] [Full Text] [Related]
5. Gait evaluation of a new electromechanical stance-control knee-ankle-foot orthosis. Yakimovich T, Lemaire ED, Kofman J. Conf Proc IEEE Eng Med Biol Soc; 2006 Apr; 2006():5924-7. PubMed ID: 17946729 [Abstract] [Full Text] [Related]
6. Examination of knee joint moments on the function of knee-ankle-foot orthoses during walking. Andrysek J, Klejman S, Kooy J. J Appl Biomech; 2013 Aug; 29(4):474-80. PubMed ID: 23182738 [Abstract] [Full Text] [Related]
7. The effect of stance control orthoses on gait characteristics and energy expenditure in knee-ankle-foot orthosis users. Davis PC, Bach TM, Pereira DM. Prosthet Orthot Int; 2010 Jun; 34(2):206-15. PubMed ID: 20470059 [Abstract] [Full Text] [Related]
8. The effect of footwear adapted with a multi-curved rocker sole in conjunction with knee-ankle-foot orthoses on walking in poliomyelitis subjects: a pilot study. Mojaver A, Arazpour M, Aminian G, Ahmadi Bani M, Bahramizadeh M, Sharifi G, Sherafatvaziri A. Disabil Rehabil Assist Technol; 2017 Oct; 12(7):747-751. PubMed ID: 27982715 [Abstract] [Full Text] [Related]
9. The efficacy of the floor-reaction ankle-foot orthosis in children with cerebral palsy. Rogozinski BM, Davids JR, Davis RB, Jameson GG, Blackhurst DW. J Bone Joint Surg Am; 2009 Oct; 91(10):2440-7. PubMed ID: 19797580 [Abstract] [Full Text] [Related]
10. A microprocessor stance and swing control orthosis improves balance, risk of falling, mobility, function, and quality of life of individuals dependent on a knee-ankle-foot orthosis for ambulation. Ruetz A, DiBello T, Toelle C, Hemmen B, Wening J, Weber E, Braatz F, Winkler T, Steinfeldt F, Umari M, Rupp R, Kluge S, Krebs A, Wurdeman SR. Disabil Rehabil; 2024 Aug; 46(17):4019-4032. PubMed ID: 37752724 [Abstract] [Full Text] [Related]
11. Effect of ankle-foot orthosis alignment and foot-plate length on the gait of adults with poststroke hemiplegia. Fatone S, Gard SA, Malas BS. Arch Phys Med Rehabil; 2009 May; 90(5):810-8. PubMed ID: 19406301 [Abstract] [Full Text] [Related]
12. Gait evaluation of new powered knee-ankle-foot orthosis in able-bodied persons: a pilot study. Arazpour M, Ahmadi F, Bani MA, Hutchins SW, Bahramizadeh M, Ghomshe FT, Kashani RV. Prosthet Orthot Int; 2014 Feb; 38(1):39-45. PubMed ID: 23660383 [Abstract] [Full Text] [Related]
13. The influence of a powered knee-ankle-foot orthosis on walking in poliomyelitis subjects: A pilot study. Arazpour M, Moradi A, Samadian M, Bahramizadeh M, Joghtaei M, Ahmadi Bani M, Hutchins SW, Mardani MA. Prosthet Orthot Int; 2016 Jun; 40(3):377-83. PubMed ID: 26184037 [Abstract] [Full Text] [Related]
14. Safety and walking ability of KAFO users with the C-Brace® Orthotronic Mobility System, a new microprocessor stance and swing control orthosis. Pröbsting E, Kannenberg A, Zacharias B. Prosthet Orthot Int; 2017 Feb; 41(1):65-77. PubMed ID: 27151648 [Abstract] [Full Text] [Related]
15. Design, construction, and evaluation of "sensor lock": an electromechanical stance control knee joint. Arazpour M, Ahmadi Bani M, Baniasad M, Samadian M, Golchin N. Disabil Rehabil Assist Technol; 2018 Apr; 13(3):226-233. PubMed ID: 28350511 [Abstract] [Full Text] [Related]
16. The gait and energy efficiency of stance control knee-ankle-foot orthoses: A literature review. Rafiaei M, Bahramizadeh M, Arazpour M, Samadian M, Hutchins SW, Farahmand F, Mardani MA. Prosthet Orthot Int; 2016 Apr; 40(2):202-14. PubMed ID: 26055252 [Abstract] [Full Text] [Related]
17. Design and evaluation of a stance-control knee-ankle-foot orthosis knee joint. Yakimovich T, Kofman J, Lemaire ED. IEEE Trans Neural Syst Rehabil Eng; 2006 Sep; 14(3):361-9. PubMed ID: 17009496 [Abstract] [Full Text] [Related]
18. The immediate effects of fitting and tuning solid ankle-foot orthoses in early stroke rehabilitation. Carse B, Bowers R, Meadows BC, Rowe P. Prosthet Orthot Int; 2015 Dec; 39(6):454-62. PubMed ID: 24938770 [Abstract] [Full Text] [Related]
19. Microprocessor Controlled Knee Ankle Foot Orthosis (KAFO) vs Stance Control vs Locked KAFO: A Randomized Controlled Trial. Deems-Dluhy S, Hoppe-Ludwig S, Mummidisetty CK, Semik P, Heinemann AW, Jayaraman A. Arch Phys Med Rehabil; 2021 Feb; 102(2):233-244. PubMed ID: 32976844 [Abstract] [Full Text] [Related]
20. Biomechanical and energetic effects of a stance-control orthotic knee joint. Zissimopoulos A, Fatone S, Gard SA. J Rehabil Res Dev; 2007 Feb; 44(4):503-13. PubMed ID: 18247247 [Abstract] [Full Text] [Related] Page: [Next] [New Search]