These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
587 related items for PubMed ID: 1646644
1. Characterization of high affinity GTPase activity correlated to beta-adrenergic receptor stimulation of adenylyl cyclase in rat parotid membranes. Hiramatsu Y, Ambudkar IS, Baum BJ. Biochim Biophys Acta; 1991 May 17; 1092(3):391-6. PubMed ID: 1646644 [Abstract] [Full Text] [Related]
2. Epidermal growth factor activation of rat parotid gland adenylate cyclase and mediation by a GTP-binding regulatory protein. Nakagawa Y, Gammichia J, Purushotham KR, Schneyer CA, Humphreys-Beher MG. Biochem Pharmacol; 1991 Nov 27; 42(12):2333-40. PubMed ID: 1662511 [Abstract] [Full Text] [Related]
3. Adenylate cyclase stimulation by VIP in rat and human parotid membranes. van Bogaert P, Soukias Y, Dehaye JP, Lambert M, Poloczek P, Winand J, Mayer R, Christophe J. Regul Pept; 1987 Jun 27; 17(6):339-48. PubMed ID: 3602475 [Abstract] [Full Text] [Related]
4. Cholera toxin action on rabbit corpus luteum membranes: effects on adenylyl cyclase activity and adenosine diphospho-ribosylation of the stimulatory guanine nucleotide-binding regulatory component. Abramowitz J, Campbell AR. Biol Reprod; 1985 Mar 27; 32(2):463-74. PubMed ID: 3921075 [Abstract] [Full Text] [Related]
7. Expression and characterization of the long and short splice variants of GS alpha in S49 cyc- cells. O'Donnell JK, Sweet RW, Stadel JM. Mol Pharmacol; 1991 Jun 27; 39(6):702-10. PubMed ID: 1646945 [Abstract] [Full Text] [Related]
8. Differential interaction of beta 1- and beta 3-adrenergic receptors with Gi in rat adipocytes. Chaudhry A, MacKenzie RG, Georgic LM, Granneman JG. Cell Signal; 1994 May 27; 6(4):457-65. PubMed ID: 7946969 [Abstract] [Full Text] [Related]
9. Determination of G-protein levels, ADP-ribosylation by cholera and pertussis toxins and the regulation of adenylyl cyclase activity in liver plasma membranes from lean and genetically diabetic (db/db) mice. Palmer TM, Houslay MD. Biochim Biophys Acta; 1991 Oct 21; 1097(3):193-204. PubMed ID: 1932144 [Abstract] [Full Text] [Related]
10. Specificity of the functional interactions of the beta-adrenergic receptor and rhodopsin with guanine nucleotide regulatory proteins reconstituted in phospholipid vesicles. Cerione RA, Staniszewski C, Benovic JL, Lefkowitz RJ, Caron MG, Gierschik P, Somers R, Spiegel AM, Codina J, Birnbaumer L. J Biol Chem; 1985 Feb 10; 260(3):1493-500. PubMed ID: 2981858 [Abstract] [Full Text] [Related]
11. Beta-adrenoceptor-linked signal transduction in ischemic-reperfused heart and scavenging of oxyradicals. Persad S, Takeda S, Panagia V, Dhalla NS. J Mol Cell Cardiol; 1997 Feb 10; 29(2):545-58. PubMed ID: 9140814 [Abstract] [Full Text] [Related]
12. Developmental enhancement of secretory response to isoproterenol coupled with increases in beta-adrenoceptor density and Gs protein function in rat parotid tissues. Ishikawa Y, Chen C, Eguchi T, Skowronski MT, Ishida H. Mech Ageing Dev; 1998 Aug 01; 104(1):75-90. PubMed ID: 9751433 [Abstract] [Full Text] [Related]
13. Activation of the inhibitory GTP-binding protein of adenylate cyclase, Gi, by beta-adrenergic receptors in reconstituted phospholipid vesicles. Asano T, Katada T, Gilman AG, Ross EM. J Biol Chem; 1984 Aug 10; 259(15):9351-4. PubMed ID: 6146612 [Abstract] [Full Text] [Related]
14. Characterization of a beta-adrenergic receptor in porcine trachealis muscle. Popovich KJ, Hiller C, Hough A, Norris JS, Cornett LE. Am J Physiol; 1984 Nov 10; 247(5 Pt 1):C342-9. PubMed ID: 6093567 [Abstract] [Full Text] [Related]
15. Allosteric equilibrium model explains steady-state coupling of beta-adrenergic receptors to adenylate cyclase in turkey erythrocyte membranes. Ugur O, Onaran HO. Biochem J; 1997 May 01; 323 ( Pt 3)(Pt 3):765-76. PubMed ID: 9169611 [Abstract] [Full Text] [Related]
16. Evidence for the endogenous GTP-dependent ADP-ribosylation of the alpha-subunit of the stimulatory guanyl-nucleotide-binding protein concomitant with an increase in basal adenylyl cyclase activity in chicken spleen cell membrane. Obara S, Yamada K, Yoshimura Y, Shimoyama M. Eur J Biochem; 1991 Aug 15; 200(1):75-80. PubMed ID: 1908778 [Abstract] [Full Text] [Related]
17. Modification of cardiac beta-adrenoceptor mechanisms by H2O2. Persad S, Rupp H, Jindal R, Arneja J, Dhalla NS. Am J Physiol; 1998 Feb 15; 274(2):H416-23. PubMed ID: 9486243 [Abstract] [Full Text] [Related]
18. Reconstitution of catecholamine-stimulated guanosinetriphosphatase activity. Brandt DR, Asano T, Pedersen SE, Ross EM. Biochemistry; 1983 Sep 13; 22(19):4357-62. PubMed ID: 6138091 [Abstract] [Full Text] [Related]
19. Independent regulation of beta-adrenergic receptor and nucleotide binding proteins of adenylate cyclase. Developmental and denervation-dependent responses in rat parotid. Ludford JM, Talamo BR. J Biol Chem; 1983 Apr 25; 258(8):4831-8. PubMed ID: 6300100 [Abstract] [Full Text] [Related]
20. Tubulin stimulates adenylyl cyclase activity in C6 glioma cells by bypassing the beta-adrenergic receptor: a potential mechanism of G protein activation. Yan K, Popova JS, Moss A, Shah B, Rasenick MM. J Neurochem; 2001 Jan 25; 76(1):182-90. PubMed ID: 11145991 [Abstract] [Full Text] [Related] Page: [Next] [New Search]