These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


226 related items for PubMed ID: 1646751

  • 1. Inactivation of xanthine oxidase by hydrogen peroxide involves site-directed hydroxyl radical formation.
    Terada LS, Leff JA, Guidot DM, Willingham IR, Repine JE.
    Free Radic Biol Med; 1991; 10(1):61-8. PubMed ID: 1646751
    [Abstract] [Full Text] [Related]

  • 2. Production of hydroxyl free radical in the xanthine oxidase system with addition of 1-methyl-3-nitro-1-nitrosoguanidine.
    Mikuni T, Tatsuta M.
    Free Radic Res; 2002 Jun; 36(6):641-7. PubMed ID: 12180189
    [Abstract] [Full Text] [Related]

  • 3. Hydroxyl radical production from hydrogen peroxide and enzymatically generated paraquat radicals: catalytic requirements and oxygen dependence.
    Winterbourn CC, Sutton HC.
    Arch Biochem Biophys; 1984 Nov 15; 235(1):116-26. PubMed ID: 6093705
    [Abstract] [Full Text] [Related]

  • 4. Characterization of free radical generation by xanthine oxidase. Evidence for hydroxyl radical generation.
    Kuppusamy P, Zweier JL.
    J Biol Chem; 1989 Jun 15; 264(17):9880-4. PubMed ID: 2542334
    [Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6. Hydrogen peroxide causes dimethylthiourea consumption while hydroxyl radical causes dimethyl sulfoxide consumption in vitro.
    Parker NB, Berger EM, Curtis WE, Muldrow ME, Linas SL, Repine JE.
    J Free Radic Biol Med; 1985 Jun 15; 1(5-6):415-9. PubMed ID: 3018065
    [Abstract] [Full Text] [Related]

  • 7. Differential effects of superoxide, hydrogen peroxide, and hydroxyl radical on intracellular calcium in human endothelial cells.
    Dreher D, Junod AF.
    J Cell Physiol; 1995 Jan 15; 162(1):147-53. PubMed ID: 7814447
    [Abstract] [Full Text] [Related]

  • 8. Production of formaldehyde and acetone by hydroxyl-radical generating systems during the metabolism of tertiary butyl alcohol.
    Cederbaum AI, Qureshi A, Cohen G.
    Biochem Pharmacol; 1983 Dec 01; 32(23):3517-24. PubMed ID: 6316986
    [Abstract] [Full Text] [Related]

  • 9. Evidence against transition metal-independent hydroxyl radical generation by xanthine oxidase.
    Lloyd RV, Mason RP.
    J Biol Chem; 1990 Oct 05; 265(28):16733-6. PubMed ID: 2170352
    [Abstract] [Full Text] [Related]

  • 10. Hydroxyl radical production by H2O2 plus Cu,Zn-superoxide dismutase reflects the activity of free copper released from the oxidatively damaged enzyme.
    Sato K, Akaike T, Kohno M, Ando M, Maeda H.
    J Biol Chem; 1992 Dec 15; 267(35):25371-7. PubMed ID: 1334093
    [Abstract] [Full Text] [Related]

  • 11. Spin traps inhibit formation of hydrogen peroxide via the dismutation of superoxide: implications for spin trapping the hydroxyl free radical.
    Britigan BE, Roeder TL, Buettner GR.
    Biochim Biophys Acta; 1991 Oct 31; 1075(3):213-22. PubMed ID: 1659450
    [Abstract] [Full Text] [Related]

  • 12. Hyperoxia and xanthine dehydrogenase/oxidase activities in rat lung and heart.
    Elsayed NM, Tierney DF.
    Arch Biochem Biophys; 1989 Sep 31; 273(2):281-6. PubMed ID: 2549869
    [Abstract] [Full Text] [Related]

  • 13. Generation of hydroxyl radical by enzymes, chemicals, and human phagocytes in vitro. Detection with the anti-inflammatory agent, dimethyl sulfoxide.
    Repine JE, Eaton JW, Anders MW, Hoidal JR, Fox RB.
    J Clin Invest; 1979 Dec 31; 64(6):1642-51. PubMed ID: 500830
    [Abstract] [Full Text] [Related]

  • 14. Evidence for participation of hydroxyl radical in increased microvascular permeability.
    Björk J, del Maestro RF, Arfors KE.
    Agents Actions Suppl; 1980 Dec 31; 7():208-13. PubMed ID: 6166180
    [Abstract] [Full Text] [Related]

  • 15. Effect of nitric oxide and cell redox status on the regulation of endothelial cell xanthine dehydrogenase.
    Hassoun PM, Yu FS, Zulueta JJ, White AC, Lanzillo JJ.
    Am J Physiol; 1995 May 31; 268(5 Pt 1):L809-17. PubMed ID: 7762682
    [Abstract] [Full Text] [Related]

  • 16. Self-limiting enhancement by nitric oxide of oxygen free radical-induced endothelial cell injury: evidence against the dual action of NO as hydroxyl radical donor/scavenger.
    Az-ma T, Fujii K, Yuge O.
    Br J Pharmacol; 1996 Oct 31; 119(3):455-62. PubMed ID: 8894164
    [Abstract] [Full Text] [Related]

  • 17. Iron and xanthine oxidase catalyze formation of an oxidant species distinguishable from OH.: comparison with the Haber-Weiss reaction.
    Winterbourn CC, Sutton HC.
    Arch Biochem Biophys; 1986 Jan 31; 244(1):27-34. PubMed ID: 3004338
    [Abstract] [Full Text] [Related]

  • 18. Catalysis of the Haber-Weiss reaction by iron-diethylenetriaminepentaacetate.
    Egan TJ, Barthakur SR, Aisen P.
    J Inorg Biochem; 1992 Dec 31; 48(4):241-9. PubMed ID: 1336036
    [Abstract] [Full Text] [Related]

  • 19. Xanthine oxidase activity in rat pulmonary artery endothelial cells and its alteration by activated neutrophils.
    Phan SH, Gannon DE, Varani J, Ryan US, Ward PA.
    Am J Pathol; 1989 Jun 31; 134(6):1201-11. PubMed ID: 2757114
    [Abstract] [Full Text] [Related]

  • 20. Comparison of the inactivation of Bacillus subtilis transforming DNA by the potassium superoxide and xanthine-xanthine oxidase systems for generating superoxide.
    Ito A, Krinsky NI, Cunningham ML, Peak MJ.
    Free Radic Biol Med; 1987 Jun 31; 3(2):111-8. PubMed ID: 2822544
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 12.