These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Intramolecular charge transfer in the bacteriorhodopsin mutants Asp85-->Asn and Asp212-->Asn: effects of pH and anions. Moltke S, Krebs MP, Mollaaghababa R, Khorana HG, Heyn MP. Biophys J; 1995 Nov; 69(5):2074-83. PubMed ID: 8580351 [Abstract] [Full Text] [Related]
3. Halide binding by the D212N mutant of Bacteriorhodopsin affects hydrogen bonding of water in the active site. Shibata M, Yoshitsugu M, Mizuide N, Ihara K, Kandori H. Biochemistry; 2007 Jun 26; 46(25):7525-35. PubMed ID: 17547422 [Abstract] [Full Text] [Related]
6. Influence of the size and protonation state of acidic residue 85 on the absorption spectrum and photoreaction of the bacteriorhodopsin chromophore. Lanyi JK, Tittor J, Váró G, Krippahl G, Oesterhelt D. Biochim Biophys Acta; 1992 Jan 30; 1099(1):102-10. PubMed ID: 1346749 [Abstract] [Full Text] [Related]
7. The two pKa's of aspartate-85 and control of thermal isomerization and proton release in the arginine-82 to lysine mutant of bacteriorhodopsin. Balashov SP, Govindjee R, Imasheva ES, Misra S, Ebrey TG, Feng Y, Crouch RK, Menick DR. Biochemistry; 1995 Jul 11; 34(27):8820-34. PubMed ID: 7612623 [Abstract] [Full Text] [Related]
14. FTIR analysis of the SII540 intermediate of sensory rhodopsin II: Asp73 is the Schiff base proton acceptor. Bergo V, Spudich EN, Scott KL, Spudich JL, Rothschild KJ. Biochemistry; 2000 Mar 21; 39(11):2823-30. PubMed ID: 10715101 [Abstract] [Full Text] [Related]
15. Proton transport by a bacteriorhodopsin mutant, aspartic acid-85-->asparagine, initiated in the unprotonated Schiff base state. Dickopf S, Alexiev U, Krebs MP, Otto H, Mollaaghababa R, Khorana HG, Heyn MP. Proc Natl Acad Sci U S A; 1995 Dec 05; 92(25):11519-23. PubMed ID: 8524795 [Abstract] [Full Text] [Related]
16. Asp85 is the only internal aspartic acid that gets protonated in the M intermediate and the purple-to-blue transition of bacteriorhodopsin. A solid-state 13C CP-MAS NMR investigation. Metz G, Siebert F, Engelhard M. FEBS Lett; 1992 Jun 01; 303(2-3):237-41. PubMed ID: 1318849 [Abstract] [Full Text] [Related]
17. Two groups control light-induced Schiff base deprotonation and the proton affinity of Asp85 in the Arg82 his mutant of bacteriorhodopsin. Imasheva ES, Balashov SP, Ebrey TG, Chen N, Crouch RK, Menick DR. Biophys J; 1999 Nov 01; 77(5):2750-63. PubMed ID: 10545374 [Abstract] [Full Text] [Related]
18. The Schiff base counterion of bacteriorhodopsin is protonated in sensory rhodopsin I: spectroscopic and functional characterization of the mutated proteins D76N and D76A. Rath P, Olson KD, Spudich JL, Rothschild KJ. Biochemistry; 1994 May 10; 33(18):5600-6. PubMed ID: 8180184 [Abstract] [Full Text] [Related]
19. Hydrogen bonding interactions with the Schiff base of bacteriorhodopsin. Resonance Raman spectroscopy of the mutants D85N and D85A. Rath P, Marti T, Sonar S, Khorana HG, Rothschild KJ. J Biol Chem; 1993 Aug 25; 268(24):17742-9. PubMed ID: 8349659 [Abstract] [Full Text] [Related]
20. Water molecules in the schiff base region of bacteriorhodopsin. Shibata M, Tanimoto T, Kandori H. J Am Chem Soc; 2003 Nov 05; 125(44):13312-3. PubMed ID: 14582999 [Abstract] [Full Text] [Related] Page: [Next] [New Search]