These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


265 related items for PubMed ID: 1646828

  • 21. Barium inhibits the endothelium-dependent component of flow but not acetylcholine-induced relaxation in isolated rabbit cerebral arteries.
    Wellman GC, Bevan JA.
    J Pharmacol Exp Ther; 1995 Jul; 274(1):47-53. PubMed ID: 7616433
    [Abstract] [Full Text] [Related]

  • 22. Nitric-oxide-related and non-related mechanisms in the acetylcholine-evoked relaxations in cat femoral arteries.
    Alonso MJ, Salaices M, Sánchez-Ferrer CF, Ponte A, López-Rico M, Marín J.
    J Vasc Res; 1993 Jul; 30(6):339-47. PubMed ID: 7694666
    [Abstract] [Full Text] [Related]

  • 23. Characterization of the potassium channels involved in EDHF-mediated relaxation in cerebral arteries.
    Petersson J, Zygmunt PM, Högestätt ED.
    Br J Pharmacol; 1997 Apr; 120(7):1344-50. PubMed ID: 9105711
    [Abstract] [Full Text] [Related]

  • 24. Evidence that different mechanisms underlie smooth muscle relaxation to nitric oxide and nitric oxide donors in the rabbit isolated carotid artery.
    Plane F, Wiley KE, Jeremy JY, Cohen RA, Garland CJ.
    Br J Pharmacol; 1998 Apr; 123(7):1351-8. PubMed ID: 9579730
    [Abstract] [Full Text] [Related]

  • 25. Heterogeneity of endothelium-dependent mechanisms in different rabbit arteries.
    Ferrer M, Encabo A, Conde MV, Marín J, Balfagón G.
    J Vasc Res; 1995 Apr; 32(5):339-46. PubMed ID: 7578802
    [Abstract] [Full Text] [Related]

  • 26. Potassium- and acetylcholine-induced vasorelaxation in mice lacking endothelial nitric oxide synthase.
    Ding H, Kubes P, Triggle C.
    Br J Pharmacol; 2000 Mar; 129(6):1194-200. PubMed ID: 10725268
    [Abstract] [Full Text] [Related]

  • 27. Contribution of glibenclamide-sensitive, ATP-dependent K+ channel activation to acetophenone analogues-mediated in vitro pulmonary artery relaxation of rat.
    Seto SW, Ho YY, Hui HN, Au AL, Kwan YW.
    Life Sci; 2006 Jan 02; 78(6):631-9. PubMed ID: 16112684
    [Abstract] [Full Text] [Related]

  • 28. Role of K+ channels and sodium pump in the vasodilation induced by acetylcholine, nitric oxide, and cyclic GMP in the rabbit aorta.
    Ferrer M, Marín J, Encabo A, Alonso MJ, Balfagón G.
    Gen Pharmacol; 1999 Jul 02; 33(1):35-41. PubMed ID: 10428014
    [Abstract] [Full Text] [Related]

  • 29. P2U-receptor mediated endothelium-dependent but nitric oxide-independent vascular relaxation.
    Malmsjö M, Edvinsson L, Erlinge D.
    Br J Pharmacol; 1998 Feb 02; 123(4):719-29. PubMed ID: 9517392
    [Abstract] [Full Text] [Related]

  • 30. Regulation of NO-dependent acetylcholine relaxation by K+ channels and the Na+-K+ ATPase pump in porcine internal mammary artery.
    Pagán RM, Prieto D, Hernández M, Correa C, García-Sacristán A, Benedito S, Martínez AC.
    Eur J Pharmacol; 2010 Sep 01; 641(1):61-6. PubMed ID: 20519140
    [Abstract] [Full Text] [Related]

  • 31. Varying extracellular [K+]: a functional approach to separating EDHF- and EDNO-related mechanisms in perfused rat mesenteric arterial bed.
    Adeagbo AS, Triggle CR.
    J Cardiovasc Pharmacol; 1993 Mar 01; 21(3):423-9. PubMed ID: 7681503
    [Abstract] [Full Text] [Related]

  • 32. NG-nitro-L-arginine-resistant endothelium-dependent relaxation induced by acetylcholine in the rabbit renal artery.
    Kitagawa S, Yamaguchi Y, Kunitomo M, Sameshima E, Fujiwara M.
    Life Sci; 1994 Mar 01; 55(7):491-8. PubMed ID: 8041228
    [Abstract] [Full Text] [Related]

  • 33.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 34. Role of nitric oxide and potassium channels in the cholinergic relaxation of rabbit ear and femoral arteries: effects of cooling.
    García-Villalón AL, Fernández N, Monge L, García JL, Gómez B, Diéguez G.
    J Vasc Res; 1995 Mar 01; 32(6):387-97. PubMed ID: 8562811
    [Abstract] [Full Text] [Related]

  • 35. The Na-K-ATPase is a target for an EDHF displaying characteristics similar to potassium ions in the porcine renal interlobar artery.
    Büssemaker E, Wallner C, Fisslthaler B, Fleming I.
    Br J Pharmacol; 2002 Nov 01; 137(5):647-54. PubMed ID: 12381678
    [Abstract] [Full Text] [Related]

  • 36. Apamin-sensitive K+ channels mediate an endothelium-dependent hyperpolarization in rabbit mesenteric arteries.
    Murphy ME, Brayden JE.
    J Physiol; 1995 Dec 15; 489 ( Pt 3)(Pt 3):723-34. PubMed ID: 8788937
    [Abstract] [Full Text] [Related]

  • 37. Effects of volatile anesthetics on acetylcholine-induced relaxation in the rabbit mesenteric resistance artery.
    Akata T, Nakashima M, Kodama K, Boyle WA, Takahashi S.
    Anesthesiology; 1995 Jan 15; 82(1):188-204. PubMed ID: 7832300
    [Abstract] [Full Text] [Related]

  • 38.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 39. The endothelium mediates a nitric oxide-independent hyperpolarization and relaxation in the rat hepatic artery.
    Zygmunt PM, Waldeck K, Högestätt ED.
    Acta Physiol Scand; 1994 Dec 15; 152(4):375-84. PubMed ID: 7701938
    [Abstract] [Full Text] [Related]

  • 40. Further investigation of endothelium-derived hyperpolarizing factor (EDHF) in rat hepatic artery: studies using 1-EBIO and ouabain.
    Edwards G, Gardener MJ, Feletou M, Brady G, Vanhoutte PM, Weston AH.
    Br J Pharmacol; 1999 Nov 15; 128(5):1064-70. PubMed ID: 10556944
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 14.