These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
240 related items for PubMed ID: 16469189
1. Rod and cone function in coneless mice. Williams GA, Daigle KA, Jacobs GH. Vis Neurosci; 2005; 22(6):807-16. PubMed ID: 16469189 [Abstract] [Full Text] [Related]
2. Residual photosensitivity in mice lacking both rod opsin and cone photoreceptor cyclic nucleotide gated channel 3 alpha subunit. Barnard AR, Appleford JM, Sekaran S, Chinthapalli K, Jenkins A, Seeliger M, Biel M, Humphries P, Douglas RH, Wenzel A, Foster RG, Hankins MW, Lucas RJ. Vis Neurosci; 2004; 21(5):675-83. PubMed ID: 15683556 [Abstract] [Full Text] [Related]
3. Cone and rod inputs to murine retinal ganglion cells: evidence of cone opsin specific channels. Ekesten B, Gouras P. Vis Neurosci; 2005; 22(6):893-903. PubMed ID: 16469196 [Abstract] [Full Text] [Related]
6. Mouse cone photoresponses obtained with electroretinogram from the isolated retina. Heikkinen H, Nymark S, Koskelainen A. Vision Res; 2008 Jan; 48(2):264-72. PubMed ID: 18166210 [Abstract] [Full Text] [Related]
7. Biphasic photoreceptor degeneration induced by light in a T17M rhodopsin mouse model of cone bystander damage. Krebs MP, White DA, Kaushal S. Invest Ophthalmol Vis Sci; 2009 Jun; 50(6):2956-65. PubMed ID: 19136713 [Abstract] [Full Text] [Related]
10. Gene dosage effect of the TrkB receptor on rod physiology and biochemistry in juvenile mouse retina. Rohrer B. Mol Vis; 2001 Dec 12; 7():288-96. PubMed ID: 11754334 [Abstract] [Full Text] [Related]
13. Molecular mechanisms characterizing cone photoresponses. Tachibanaki S, Shimauchi-Matsukawa Y, Arinobu D, Kawamura S. Photochem Photobiol; 2007 Dec 12; 83(1):19-26. PubMed ID: 16706600 [Abstract] [Full Text] [Related]
14. The transcription factor Nr2e3 functions in retinal progenitors to suppress cone cell generation. Haider NB, Demarco P, Nystuen AM, Huang X, Smith RS, McCall MA, Naggert JK, Nishina PM. Vis Neurosci; 2006 Dec 12; 23(6):917-29. PubMed ID: 17266784 [Abstract] [Full Text] [Related]
15. Electroretinography of wild-type and Cry mutant mice reveals circadian tuning of photopic and mesopic retinal responses. Cameron MA, Barnard AR, Hut RA, Bonnefont X, van der Horst GT, Hankins MW, Lucas RJ. J Biol Rhythms; 2008 Dec 12; 23(6):489-501. PubMed ID: 19060258 [Abstract] [Full Text] [Related]
16. Learned arbitrary responses to light in mice without rods or cones. Mrosovsky N, Salmon PA. Naturwissenschaften; 2002 Nov 12; 89(11):525-7. PubMed ID: 12451457 [Abstract] [Full Text] [Related]
18. Influence of cone pigment coexpression on spectral sensitivity and color vision in the mouse. Jacobs GH, Williams GA, Fenwick JA. Vision Res; 2004 Nov 12; 44(14):1615-22. PubMed ID: 15135998 [Abstract] [Full Text] [Related]
19. Into the twilight zone: the complexities of mesopic vision and luminous efficiency. Stockman A, Sharpe LT. Ophthalmic Physiol Opt; 2006 May 12; 26(3):225-39. PubMed ID: 16684149 [Abstract] [Full Text] [Related]
20. Using Silent Substitution to Track the Mesopic Transition From Rod- to Cone-Based Vision in Mice. Allen AE, Lucas RJ. Invest Ophthalmol Vis Sci; 2016 Jan 01; 57(1):276-87. PubMed ID: 26818794 [Abstract] [Full Text] [Related] Page: [Next] [New Search]