These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Transcriptional profiling of Saccharomyces cerevisiae T2 cells upon exposure to hardwood spent sulphite liquor: comparison to acetic acid, furfural and hydroxymethylfurfural. Bajwa PK, Ho CY, Chan CK, Martin VJ, Trevors JT, Lee H. Antonie Van Leeuwenhoek; 2013 Jun; 103(6):1281-95. PubMed ID: 23539198 [Abstract] [Full Text] [Related]
4. Enhanced biotransformation of furfural and hydroxymethylfurfural by newly developed ethanologenic yeast strains. Liu ZL, Slininger PJ, Gorsich SW. Appl Biochem Biotechnol; 2005 Jun; 121-124():451-60. PubMed ID: 15917621 [Abstract] [Full Text] [Related]
9. Bioabatement to remove inhibitors from biomass-derived sugar hydrolysates. Nichols NN, Dien BS, Guisado GM, López MJ. Appl Biochem Biotechnol; 2005 Nov; 121-124():379-90. PubMed ID: 15917615 [Abstract] [Full Text] [Related]
10. Fed-batch cultivation of Saccharomyces cerevisiae on lignocellulosic hydrolyzate. Petersson A, Lidén G. Biotechnol Lett; 2007 Feb; 29(2):219-25. PubMed ID: 17091372 [Abstract] [Full Text] [Related]
11. Fed-batch cultivation of Mucor indicus in dilute-acid lignocellulosic hydrolyzate for ethanol production. Karimi K, Brandberg T, Edebo L, Taherzadeh MJ. Biotechnol Lett; 2005 Sep; 27(18):1395-400. PubMed ID: 16215856 [Abstract] [Full Text] [Related]
12. Deletion of the PHO13 gene in Saccharomyces cerevisiae improves ethanol production from lignocellulosic hydrolysate in the presence of acetic and formic acids, and furfural. Fujitomi K, Sanda T, Hasunuma T, Kondo A. Bioresour Technol; 2012 May; 111():161-6. PubMed ID: 22357292 [Abstract] [Full Text] [Related]
13. Metabolomic analysis reveals key metabolites related to the rapid adaptation of Saccharomyce cerevisiae to multiple inhibitors of furfural, acetic acid, and phenol. Wang X, Li BZ, Ding MZ, Zhang WW, Yuan YJ. OMICS; 2013 Mar; 17(3):150-9. PubMed ID: 23421908 [Abstract] [Full Text] [Related]
14. [Inhibitors and their effects on Saccharomyces cerevisiae and relevant countermeasures in bioprocess of ethanol production from lignocellulose--a review]. Li H, Zhang X, Shen Y, Dong Y, Bao X. Sheng Wu Gong Cheng Xue Bao; 2009 Sep; 25(9):1321-8. PubMed ID: 19938474 [Abstract] [Full Text] [Related]
15. Multiple gene-mediated NAD(P)H-dependent aldehyde reduction is a mechanism of in situ detoxification of furfural and 5-hydroxymethylfurfural by Saccharomyces cerevisiae. Liu ZL, Moon J, Andersh BJ, Slininger PJ, Weber S. Appl Microbiol Biotechnol; 2008 Dec; 81(4):743-53. PubMed ID: 18810428 [Abstract] [Full Text] [Related]
17. A 5-hydroxymethyl furfural reducing enzyme encoded by the Saccharomyces cerevisiae ADH6 gene conveys HMF tolerance. Petersson A, Almeida JR, Modig T, Karhumaa K, Hahn-Hägerdal B, Gorwa-Grauslund MF, Lidén G. Yeast; 2006 Apr 30; 23(6):455-64. PubMed ID: 16652391 [Abstract] [Full Text] [Related]
18. Comparison of SHF and SSF processes from steam-exploded wheat straw for ethanol production by xylose-fermenting and robust glucose-fermenting Saccharomyces cerevisiae strains. Tomás-Pejó E, Oliva JM, Ballesteros M, Olsson L. Biotechnol Bioeng; 2008 Aug 15; 100(6):1122-31. PubMed ID: 18383076 [Abstract] [Full Text] [Related]
19. Production of ethanol from pulp mill hardwood and softwood spent sulfite liquors by genetically engineered E. coli. Lawford HG, Rousseau JD. Appl Biochem Biotechnol; 1993 Aug 15; 39-40():667-85. PubMed ID: 8323269 [Abstract] [Full Text] [Related]
20. Tolerance to furfural-induced stress is associated with pentose phosphate pathway genes ZWF1, GND1, RPE1, and TKL1 in Saccharomyces cerevisiae. Gorsich SW, Dien BS, Nichols NN, Slininger PJ, Liu ZL, Skory CD. Appl Microbiol Biotechnol; 2006 Jul 15; 71(3):339-49. PubMed ID: 16222531 [Abstract] [Full Text] [Related] Page: [Next] [New Search]