These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


182 related items for PubMed ID: 16471760

  • 1. Factors governing the metal coordination number in metal complexes from Cambridge Structural Database analyses.
    Dudev M, Wang J, Dudev T, Lim C.
    J Phys Chem B; 2006 Feb 02; 110(4):1889-95. PubMed ID: 16471760
    [Abstract] [Full Text] [Related]

  • 2. Factors governing metal-ligand distances and coordination geometries of metal complexes.
    Kuppuraj G, Dudev M, Lim C.
    J Phys Chem B; 2009 Mar 05; 113(9):2952-60. PubMed ID: 19708219
    [Abstract] [Full Text] [Related]

  • 3. Factors governing the metal coordination number in isolated group IA and IIA metal hydrates.
    Tunell I, Lim C.
    Inorg Chem; 2006 Jun 12; 45(12):4811-9. PubMed ID: 16749846
    [Abstract] [Full Text] [Related]

  • 4. Mononuclear versus binuclear metal-binding sites: metal-binding affinity and selectivity from PDB survey and DFT/CDM calculations.
    Yang TY, Dudev T, Lim C.
    J Am Chem Soc; 2008 Mar 26; 130(12):3844-52. PubMed ID: 18303888
    [Abstract] [Full Text] [Related]

  • 5. A DFT/CDM Study of metal-carboxylate interactions in metalloproteins: factors governing the maximum number of metal-bound carboxylates.
    Dudev T, Lim C.
    J Am Chem Soc; 2006 Feb 08; 128(5):1553-61. PubMed ID: 16448126
    [Abstract] [Full Text] [Related]

  • 6. Metals in proteins: correlation between the metal-ion type, coordination number and the amino-acid residues involved in the coordination.
    Dokmanić I, Sikić M, Tomić S.
    Acta Crystallogr D Biol Crystallogr; 2008 Mar 08; 64(Pt 3):257-63. PubMed ID: 18323620
    [Abstract] [Full Text] [Related]

  • 7. First-second shell interactions in metal binding sites in proteins: a PDB survey and DFT/CDM calculations.
    Dudev T, Lin YL, Dudev M, Lim C.
    J Am Chem Soc; 2003 Mar 12; 125(10):3168-80. PubMed ID: 12617685
    [Abstract] [Full Text] [Related]

  • 8. Strong metal ion size based selectivity of the highly preorganized ligand PDA (1,10-phenanthroline-2,9-dicarboxylic acid) with trivalent metal ions. A crystallographic, fluorometric, and thermodynamic study.
    Williams NJ, Dean NE, VanDerveer DG, Luckay RC, Hancock RD.
    Inorg Chem; 2009 Aug 17; 48(16):7853-63. PubMed ID: 19603801
    [Abstract] [Full Text] [Related]

  • 9. Characterization of ligand-functionalized microcantilevers for metal ion sensing.
    Dutta P, Chapman PJ, Datskos PG, Sepaniak MJ.
    Anal Chem; 2005 Oct 15; 77(20):6601-8. PubMed ID: 16223246
    [Abstract] [Full Text] [Related]

  • 10. Competition between protein ligands and cytoplasmic inorganic anions for the metal cation: a DFT/CDM study.
    Dudev T, Lim C.
    J Am Chem Soc; 2006 Aug 16; 128(32):10541-8. PubMed ID: 16895422
    [Abstract] [Full Text] [Related]

  • 11. Dissecting the general physicochemical properties of noncovalent interactions involving tyrosine side chain as a second-shell ligand in biomolecular metal-binding site mimetics: an experimental study combining fluorescence, 13C NMR spectroscopy and ESI mass spectrometry.
    Yang CM, Li X, Wei W, Li Y, Duan Z, Zheng J, Huang T.
    Chemistry; 2007 Aug 16; 13(11):3120-30. PubMed ID: 17201001
    [Abstract] [Full Text] [Related]

  • 12. Modeling of metal interaction geometries for protein-ligand docking.
    Seebeck B, Reulecke I, Kämper A, Rarey M.
    Proteins; 2008 May 15; 71(3):1237-54. PubMed ID: 18041759
    [Abstract] [Full Text] [Related]

  • 13. A study of the coordination shell of aluminum(III) and magnesium(II) in model protein environments: thermodynamics of the complex formation and metal exchange reactions.
    Rezabal E, Mercero JM, Lopez X, Ugalde JM.
    J Inorg Biochem; 2006 Mar 15; 100(3):374-84. PubMed ID: 16455140
    [Abstract] [Full Text] [Related]

  • 14. Flexibility of metal binding sites in proteins on a database scale.
    Babor M, Greenblatt HM, Edelman M, Sobolev V.
    Proteins; 2005 May 01; 59(2):221-30. PubMed ID: 15726624
    [Abstract] [Full Text] [Related]

  • 15. Metal-binding affinity and selectivity of nonstandard natural amino acid residues from DFT/CDM calculations.
    Dudev T, Lim C.
    J Phys Chem B; 2009 Aug 27; 113(34):11754-64. PubMed ID: 19642664
    [Abstract] [Full Text] [Related]

  • 16. DFT study on the selectivity of complexation of metal cations with a dioxadithia crown ether ligand.
    Korchowiec J, Korchowiec B, Priebe W, Rogalska E.
    J Phys Chem A; 2008 Dec 25; 112(51):13633-40. PubMed ID: 19055400
    [Abstract] [Full Text] [Related]

  • 17. Infrared multiple photon dissociation spectroscopy of cationized asparagine: effects of metal cation size on gas-phase conformation.
    Heaton AL, Bowman VN, Oomens J, Steill JD, Armentrout PB.
    J Phys Chem A; 2009 May 14; 113(19):5519-30. PubMed ID: 19368405
    [Abstract] [Full Text] [Related]

  • 18. Toward understanding metal-binding specificity of porphyrin: a conceptual density functional theory study.
    Feng XT, Yu JG, Lei M, Fang WH, Liu S.
    J Phys Chem B; 2009 Oct 08; 113(40):13381-9. PubMed ID: 19751061
    [Abstract] [Full Text] [Related]

  • 19. Crystallochemical formula as a tool for describing metal-ligand complexes - a pyridine-2,6-dicarboxylate example.
    Serezhkin VN, Vologzhanina AV, Serezhkina LB, Smirnova ES, Grachova EV, Ostrova PV, Antipin MY.
    Acta Crystallogr B; 2009 Feb 08; 65(Pt 1):45-53. PubMed ID: 19155558
    [Abstract] [Full Text] [Related]

  • 20. Dynamic equilibria in solvent-mediated anion, cation and ligand exchange in transition-metal coordination polymers: solid-state transfer or recrystallisation?
    Cui X, Khlobystov AN, Chen X, Marsh DH, Blake AJ, Lewis W, Champness NR, Roberts CJ, Schröder M.
    Chemistry; 2009 Sep 07; 15(35):8861-73. PubMed ID: 19630015
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 10.