These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
249 related items for PubMed ID: 16480306
1. Time-dependent density functional calculations of optical rotatory dispersion including resonance wavelengths as a potentially useful tool for determining absolute configurations of chiral molecules. Autschbach J, Jensen L, Schatz GC, Tse YC, Krykunov M. J Phys Chem A; 2006 Feb 23; 110(7):2461-73. PubMed ID: 16480306 [Abstract] [Full Text] [Related]
2. Comparison of time-dependent density-functional theory and coupled cluster theory for the calculation of the optical rotations of chiral molecules. Crawford TD, Stephens PJ. J Phys Chem A; 2008 Feb 14; 112(6):1339-45. PubMed ID: 18198852 [Abstract] [Full Text] [Related]
3. Determination of absolute configuration using concerted ab Initio DFT calculations of electronic circular dichroism and optical rotation: bicyclo[3.3.1]nonane diones. Stephens PJ, McCann DM, Butkus E, Stoncius S, Cheeseman JR, Frisch MJ. J Org Chem; 2004 Mar 19; 69(6):1948-58. PubMed ID: 15058939 [Abstract] [Full Text] [Related]
4. Determination of absolute configurations of chiral molecules using ab initio time-dependent Density Functional Theory calculations of optical rotation: how reliable are absolute configurations obtained for molecules with small rotations? Stephens PJ, McCann DM, Cheeseman JR, Frisch MJ. Chirality; 2005 Mar 19; 17 Suppl():S52-64. PubMed ID: 15747317 [Abstract] [Full Text] [Related]
5. Density functional theory calculations of optical rotation: employment of ADZP and its comparison with other basis sets. Neto AC, Jorge FE. Chirality; 2007 Jan 19; 19(1):67-73. PubMed ID: 17089343 [Abstract] [Full Text] [Related]
6. Determination of absolute configuration using density functional theory calculations of optical rotation and electronic circular dichroism: chiral alkenes. McCann DM, Stephens PJ. J Org Chem; 2006 Aug 04; 71(16):6074-98. PubMed ID: 16872191 [Abstract] [Full Text] [Related]
7. Determination of absolute configuration using density functional theory calculation of optical rotation: chiral alkanes. McCann DM, Stephens PJ, Cheeseman JR. J Org Chem; 2004 Dec 10; 69(25):8709-17. PubMed ID: 15575747 [Abstract] [Full Text] [Related]
8. Time dependent density functional theory calculations for electronic circular dichroism spectra and optical rotations of conformationally flexible chiral donor-acceptor dyad. Mori T, Inoue Y, Grimme S. J Org Chem; 2006 Dec 22; 71(26):9797-806. PubMed ID: 17168599 [Abstract] [Full Text] [Related]
9. Density functional calculations on electronic circular dichroism spectra of chiral transition metal complexes. Autschbach J, Jorge FE, Ziegler T. Inorg Chem; 2003 May 05; 42(9):2867-77. PubMed ID: 12716178 [Abstract] [Full Text] [Related]
10. Determination of the absolute configurations of natural products via density functional theory calculations of vibrational circular dichroism, electronic circular dichroism, and optical rotation: the iridoids plumericin and isoplumericin. Stephens PJ, Pan JJ, Devlin FJ, Krohn K, Kurtán T. J Org Chem; 2007 Apr 27; 72(9):3521-36. PubMed ID: 17388636 [Abstract] [Full Text] [Related]
11. Calculation of circular dichroism spectra from optical rotatory dispersion, and vice versa, as complementary tools for theoretical studies of optical activity using time-dependent density functional theory. Krykunov M, Kundrat MD, Autschbach J. J Chem Phys; 2006 Nov 21; 125(19):194110. PubMed ID: 17129092 [Abstract] [Full Text] [Related]
12. Determination of the absolute configurations of natural products via density functional theory calculations of optical rotation, electronic circular dichroism, and vibrational circular dichroism: the cytotoxic sesquiterpene natural products quadrone, suberosenone, suberosanone, and suberosenol A acetate. Stephens PJ, McCann DM, Devlin FJ, Smith AB. J Nat Prod; 2006 Jul 21; 69(7):1055-64. PubMed ID: 16872144 [Abstract] [Full Text] [Related]
13. Fast generation of nonresonant and resonant optical rotatory dispersion curves with the help of circular dichroism calculations and Kramers-Kronig transformations. Rudolph M, Autschbach J. Chirality; 2008 Sep 21; 20(9):995-1008. PubMed ID: 18335484 [Abstract] [Full Text] [Related]
14. Time-dependent density functional response theory for electronic chiroptical properties of chiral molecules. Autschbach J, Nitsch-Velasquez L, Rudolph M. Top Curr Chem; 2011 Sep 21; 298():1-98. PubMed ID: 21321799 [Abstract] [Full Text] [Related]
15. Ab initio calculation of optical rotatory dispersion (ORD) curves: a simple and reliable approach to the assignment of the molecular absolute configuration. Giorgio E, Viglione RG, Zanasi R, Rosini C. J Am Chem Soc; 2004 Oct 13; 126(40):12968-76. PubMed ID: 15469294 [Abstract] [Full Text] [Related]
16. Absolute configuration of natural cyclohexene oxides by time dependent density functional theory calculation of the optical rotation: the absolute configuration of (-)-sphaeropsidone and (-)-episphaeropsidone revised. Mennucci B, Claps M, Evidente A, Rosini C. J Org Chem; 2007 Aug 31; 72(18):6680-91. PubMed ID: 17683144 [Abstract] [Full Text] [Related]
17. Temperature dependence of the optical rotation in six bicyclic organic molecules calculated by vibrational averaging. Mort BC, Autschbach J. Chemphyschem; 2007 Mar 12; 8(4):605-16. PubMed ID: 17304606 [Abstract] [Full Text] [Related]
18. Determination of the absolute configuration of [3(2)](1,4)barrelenophanedicarbonitrile using concerted time-dependent density functional theory calculations of optical rotation and electronic circular dichroism. Stephens PJ, McCann DM, Devlin FJ, Cheeseman JR, Frisch MJ. J Am Chem Soc; 2004 Jun 23; 126(24):7514-21. PubMed ID: 15198598 [Abstract] [Full Text] [Related]
19. Assignment of the molecular absolute configuration through the ab initio Hartree-Fock calculation of the optical rotation: can the circular dichroism data help in reducing basis set requirements? Giorgio E, Minichino C, Viglione RG, Zanasi R, Rosini C. J Org Chem; 2003 Jun 27; 68(13):5186-92. PubMed ID: 12816475 [Abstract] [Full Text] [Related]
20. Influence of molecular geometry, exchange-correlation functional, and solvent effects in the modeling of vertical excitation energies in phthalocyanines using time-dependent density functional theory (TDDFT) and polarized continuum model TDDFT methods: can modern computational chemistry methods explain experimental controversies? Nemykin VN, Hadt RG, Belosludov RV, Mizuseki H, Kawazoe Y. J Phys Chem A; 2007 Dec 20; 111(50):12901-13. PubMed ID: 18004829 [Abstract] [Full Text] [Related] Page: [Next] [New Search]