These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


630 related items for PubMed ID: 16485930

  • 1. Relaxation of the distribution function tails for systems described by Fokker-Planck equations.
    Chavanis PH, Lemou M.
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Dec; 72(6 Pt 1):061106. PubMed ID: 16485930
    [Abstract] [Full Text] [Related]

  • 2. Kappa and other nonequilibrium distributions from the Fokker-Planck equation and the relationship to Tsallis entropy.
    Shizgal BD.
    Phys Rev E; 2018 May; 97(5-1):052144. PubMed ID: 29906998
    [Abstract] [Full Text] [Related]

  • 3. Kinetic theory of point vortices: diffusion coefficient and systematic drift.
    Chavanis PH.
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Aug; 64(2 Pt 2):026309. PubMed ID: 11497701
    [Abstract] [Full Text] [Related]

  • 4. Collisional relaxation of two-dimensional self-gravitating systems.
    Marcos B.
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Sep; 88(3):032112. PubMed ID: 24125219
    [Abstract] [Full Text] [Related]

  • 5. Nonlinear Kinetics on Lattices Based on the Kinetic Interaction Principle.
    Kaniadakis G, Hristopulos DT.
    Entropy (Basel); 2018 Jun 01; 20(6):. PubMed ID: 33265516
    [Abstract] [Full Text] [Related]

  • 6. Generalized quantum Fokker-Planck, diffusion, and Smoluchowski equations with true probability distribution functions.
    Banik SK, Bag BC, Ray DS.
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 May 01; 65(5 Pt 1):051106. PubMed ID: 12059528
    [Abstract] [Full Text] [Related]

  • 7. Prediction of anomalous diffusion and algebraic relaxations for long-range interacting systems, using classical statistical mechanics.
    Bouchet F, Dauxois T.
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Oct 01; 72(4 Pt 2):045103. PubMed ID: 16383452
    [Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9. Fokker-Planck equation for Boltzmann-type and active particles: transfer probability approach.
    Trigger SA.
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Apr 01; 67(4 Pt 2):046403. PubMed ID: 12786497
    [Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11. Fokker-Planck equation for Coulomb relaxation and wave-particle diffusion: Spectral solution and the stability of the Kappa distribution to Coulomb collisions.
    Zhang W, Shizgal BD.
    Phys Rev E; 2020 Dec 01; 102(6-1):062103. PubMed ID: 33466053
    [Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13. Dilatation symmetry of the Fokker-Planck equation and anomalous diffusion.
    Abe S.
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Jan 01; 69(1 Pt 2):016102. PubMed ID: 14995662
    [Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17. Exponential Stability and Hypoelliptic Regularization for the Kinetic Fokker-Planck Equation with Confining Potential.
    Arnold A, Toshpulatov G.
    J Stat Phys; 2024 Jan 01; 191(5):51. PubMed ID: 38686172
    [Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20. Stochastic dynamics from the fractional Fokker-Planck-Kolmogorov equation: large-scale behavior of the turbulent transport coefficient.
    Milovanov AV.
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Apr 01; 63(4 Pt 2):047301. PubMed ID: 11308983
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 32.