These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


211 related items for PubMed ID: 16488429

  • 1. Multiple solvent crystal structures: probing binding sites, plasticity and hydration.
    Mattos C, Bellamacina CR, Peisach E, Pereira A, Vitkup D, Petsko GA, Ringe D.
    J Mol Biol; 2006 Apr 14; 357(5):1471-82. PubMed ID: 16488429
    [Abstract] [Full Text] [Related]

  • 2. Multiple solvent crystal structures of ribonuclease A: an assessment of the method.
    Dechene M, Wink G, Smith M, Swartz P, Mattos C.
    Proteins; 2009 Sep 14; 76(4):861-81. PubMed ID: 19291738
    [Abstract] [Full Text] [Related]

  • 3. Locating and characterizing binding sites on proteins.
    Mattos C, Ringe D.
    Nat Biotechnol; 1996 May 14; 14(5):595-9. PubMed ID: 9630949
    [Abstract] [Full Text] [Related]

  • 4. Locating interaction sites on proteins: the crystal structure of thermolysin soaked in 2% to 100% isopropanol.
    English AC, Done SH, Caves LS, Groom CR, Hubbard RE.
    Proteins; 1999 Dec 01; 37(4):628-40. PubMed ID: 10651278
    [Abstract] [Full Text] [Related]

  • 5. Organic solvent binding to crystalline subtilisin1 in mostly aqueous media and in the neat solvents.
    Schmitke JL, Stern LJ, Klibanov AM.
    Biochem Biophys Res Commun; 1998 Jul 20; 248(2):273-7. PubMed ID: 9675126
    [Abstract] [Full Text] [Related]

  • 6. Computational sampling of a cryptic drug binding site in a protein receptor: explicit solvent molecular dynamics and inhibitor docking to p38 MAP kinase.
    Frembgen-Kesner T, Elcock AH.
    J Mol Biol; 2006 May 26; 359(1):202-14. PubMed ID: 16616932
    [Abstract] [Full Text] [Related]

  • 7. Analysis of solvent structure in proteins using neutron D2O-H2O solvent maps: pattern of primary and secondary hydration of trypsin.
    Kossiakoff AA, Sintchak MD, Shpungin J, Presta LG.
    Proteins; 1992 Mar 26; 12(3):223-36. PubMed ID: 1557350
    [Abstract] [Full Text] [Related]

  • 8. Exploring the binding site structure of the PPAR gamma ligand-binding domain by computational solvent mapping.
    Sheu SH, Kaya T, Waxman DJ, Vajda S.
    Biochemistry; 2005 Feb 01; 44(4):1193-209. PubMed ID: 15667213
    [Abstract] [Full Text] [Related]

  • 9. A connected-cluster of hydration around myoglobin: correlation between molecular dynamics simulations and experiment.
    Lounnas V, Pettitt BM.
    Proteins; 1994 Feb 01; 18(2):133-47. PubMed ID: 8159663
    [Abstract] [Full Text] [Related]

  • 10. Large-scale networks of hydration water molecules around bovine beta-trypsin revealed by cryogenic X-ray crystal structure analysis.
    Nakasako M.
    J Mol Biol; 1999 Jun 11; 289(3):547-64. PubMed ID: 10356328
    [Abstract] [Full Text] [Related]

  • 11. Structure of porcine pancreatic elastase complexed with FR901277, a novel macrocyclic inhibitor of elastases, at 1.6 A resolution.
    Nakanishi I, Kinoshita T, Sato A, Tada T.
    Biopolymers; 2000 Apr 15; 53(5):434-45. PubMed ID: 10738204
    [Abstract] [Full Text] [Related]

  • 12. Direct structural observation of an acyl-enzyme intermediate in the hydrolysis of an ester substrate by elastase.
    Ding X, Rasmussen BF, Petsko GA, Ringe D.
    Biochemistry; 1994 Aug 09; 33(31):9285-93. PubMed ID: 8049229
    [Abstract] [Full Text] [Related]

  • 13. Role of protein-solvent interactions in refolding: effects of cosolvent additives on the renaturation of porcine pancreatic elastase at various pHs.
    Jaspard E.
    Arch Biochem Biophys; 2000 Mar 15; 375(2):220-8. PubMed ID: 10700378
    [Abstract] [Full Text] [Related]

  • 14. Static and dynamic water molecules in Cu,Zn superoxide dismutase.
    Falconi M, Brunelli M, Pesce A, Ferrario M, Bolognesi M, Desideri A.
    Proteins; 2003 Jun 01; 51(4):607-15. PubMed ID: 12784219
    [Abstract] [Full Text] [Related]

  • 15. Analysis of ligand-bound water molecules in high-resolution crystal structures of protein-ligand complexes.
    Lu Y, Wang R, Yang CY, Wang S.
    J Chem Inf Model; 2007 Jun 01; 47(2):668-75. PubMed ID: 17266298
    [Abstract] [Full Text] [Related]

  • 16. Computational solvent mapping reveals the importance of local conformational changes for broad substrate specificity in mammalian cytochromes P450.
    Clodfelter KH, Waxman DJ, Vajda S.
    Biochemistry; 2006 Aug 08; 45(31):9393-407. PubMed ID: 16878974
    [Abstract] [Full Text] [Related]

  • 17. DRoP: Automated detection of conserved solvent-binding sites on proteins.
    Kearney BM, Schwabe M, Marcus KC, Roberts DM, Dechene M, Swartz P, Mattos C.
    Proteins; 2020 Jan 08; 88(1):152-165. PubMed ID: 31294888
    [Abstract] [Full Text] [Related]

  • 18. Volatile anesthetic binding to proteins is influenced by solvent and aliphatic residues.
    Streiff JH, Jones KA.
    J Chem Inf Model; 2008 Oct 08; 48(10):2066-73. PubMed ID: 18808106
    [Abstract] [Full Text] [Related]

  • 19. Carbohydrate-binding proteins: Dissecting ligand structures through solvent environment occupancy.
    Gauto DF, Di Lella S, Guardia CM, Estrin DA, Martí MA.
    J Phys Chem B; 2009 Jun 25; 113(25):8717-24. PubMed ID: 19485380
    [Abstract] [Full Text] [Related]

  • 20. Dynamic properties of the first enzymatic reaction steps of porcine pancreatic elastase. How rigid is the active site of the native enzyme? Molecular dynamics simulation.
    Geller M, Carlson-Golab G, Lesyng B, Swanson SM, Meyer EF.
    Biopolymers; 1990 Jun 25; 30(7-8):781-96. PubMed ID: 2275978
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 11.