These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


168 related items for PubMed ID: 16490384

  • 21. Simultaneous on-line size and chemical analysis of gas phase and particulate phase of cigarette mainstream smoke.
    Adam T, McAughey J, McGrath C, Mocker C, Zimmermann R.
    Anal Bioanal Chem; 2009 Jun; 394(4):1193-203. PubMed ID: 19381615
    [Abstract] [Full Text] [Related]

  • 22. Determination of eugenol, anethole, and coumarin in the mainstream cigarette smoke of Indonesian clove cigarettes.
    Polzin GM, Stanfill SB, Brown CR, Ashley DL, Watson CH.
    Food Chem Toxicol; 2007 Oct; 45(10):1948-53. PubMed ID: 17583404
    [Abstract] [Full Text] [Related]

  • 23. Solid-phase microextraction-based approach to determine free-base nicotine in trapped mainstream cigarette smoke total particulate matter.
    Watson CH, Trommel JS, Ashley DL.
    J Agric Food Chem; 2004 Dec 01; 52(24):7240-5. PubMed ID: 15563201
    [Abstract] [Full Text] [Related]

  • 24. Toxicological evaluation of an electrically heated cigarette. Part 2: Chemical composition of mainstream smoke.
    Stabbert R, Voncken P, Rustemeier K, Haussmann HJ, Roemer E, Schaffernicht H, Patskan G.
    J Appl Toxicol; 2003 Dec 01; 23(5):329-39. PubMed ID: 12975772
    [Abstract] [Full Text] [Related]

  • 25. Spectrofluorometric method for measuring tobacco smoke particulate matter on cigarette filters and Cambridge pads.
    Paszkiewicz GM, Pauly JL.
    Tob Control; 2008 Sep 01; 17 Suppl 1():i53-8. PubMed ID: 18768460
    [Abstract] [Full Text] [Related]

  • 26. Gender differences relative to smoking behavior and emissions of toxins from mainstream cigarette smoke.
    Melikian AA, Djordjevic MV, Hosey J, Zhang J, Chen S, Zang E, Muscat J, Stellman SD.
    Nicotine Tob Res; 2007 Mar 01; 9(3):377-87. PubMed ID: 17365769
    [Abstract] [Full Text] [Related]

  • 27. Preliminary results of heterodyne detection with quantum-cascade lasers in the 9 microm region.
    Parvitte B, Joly L, Zéninari V, Courtois D.
    Spectrochim Acta A Mol Biomol Spectrosc; 2004 Dec 01; 60(14):3285-90. PubMed ID: 15561610
    [Abstract] [Full Text] [Related]

  • 28. Application of time-of-flight mass spectrometry with laser-based photoionization methods for time-resolved on-line analysis of mainstream cigarette smoke.
    Mitschke S, Adam T, Streibel T, Baker RR, Zimmermann R.
    Anal Chem; 2005 Apr 15; 77(8):2288-96. PubMed ID: 15828759
    [Abstract] [Full Text] [Related]

  • 29. The effect of tobacco ingredients on smoke chemistry. Part II: casing ingredients.
    Baker RR, Pereira da Silva JR, Smith G.
    Food Chem Toxicol; 2004 Apr 15; 42 Suppl():S39-52. PubMed ID: 15072837
    [Abstract] [Full Text] [Related]

  • 30. Fluorescent approach to quantitation of reactive oxygen species in mainstream cigarette smoke.
    Ou B, Huang D.
    Anal Chem; 2006 May 01; 78(9):3097-103. PubMed ID: 16642999
    [Abstract] [Full Text] [Related]

  • 31. Hydrazine detection limits in the cigarette smoke matrix using infrared tunable diode laser absorption spectroscopy.
    Plunkett S, Parrish ME, Shafer KH, Shorter JH, Nelson DD, Zahniser MS.
    Spectrochim Acta A Mol Biomol Spectrosc; 2002 Sep 01; 58(11):2505-17. PubMed ID: 12353701
    [Abstract] [Full Text] [Related]

  • 32. Effect of charcoal-containing cigarette filters on gas phase volatile organic compounds in mainstream cigarette smoke.
    Polzin GM, Zhang L, Hearn BA, Tavakoli AD, Vaughan C, Ding YS, Ashley DL, Watson CH.
    Tob Control; 2008 Sep 01; 17 Suppl 1():i10-6. PubMed ID: 18768454
    [Abstract] [Full Text] [Related]

  • 33. Toxicological evaluation of potassium sorbate added to cigarette tobacco.
    Gaworski CL, Lemus-Olalde R, Carmines EL.
    Food Chem Toxicol; 2008 Jan 01; 46(1):339-51. PubMed ID: 17905505
    [Abstract] [Full Text] [Related]

  • 34. Digital image analysis of cigarette filter stains as an indicator of compensatory smoking.
    Strasser AA, O'Connor RJ, Mooney ME, Wileyto EP.
    Cancer Epidemiol Biomarkers Prev; 2006 Dec 01; 15(12):2565-9. PubMed ID: 17164388
    [Abstract] [Full Text] [Related]

  • 35. Stabilization, injection and control of quantum cascade lasers, and their application to chemical sensing in the infrared.
    Taubman MS, Myers TL, Cannon BD, Williams RM.
    Spectrochim Acta A Mol Biomol Spectrosc; 2004 Dec 01; 60(14):3457-68. PubMed ID: 15561632
    [Abstract] [Full Text] [Related]

  • 36. Nanoparticles in cigarette smoke; real-time undiluted measurements by a scanning mobility particle sizer.
    van Dijk WD, Gopal S, Scheepers PT.
    Anal Bioanal Chem; 2011 Apr 01; 399(10):3573-8. PubMed ID: 21308367
    [Abstract] [Full Text] [Related]

  • 37. Impaction collection and slurry sampling for the determination of arsenic, cadmium, and lead in sidestream cigarette smoke by inductively coupled plasma-mass spectrometry.
    Chang MJ, Walker K, McDaniel RL, Connell CT.
    J Environ Monit; 2005 Dec 01; 7(12):1349-54. PubMed ID: 16307095
    [Abstract] [Full Text] [Related]

  • 38. Gas chromatography/mass spectrometry versus liquid chromatography/fluorescence detection in the analysis of phenols in mainstream cigarette smoke.
    Moldoveanu SC, Kiser M.
    J Chromatogr A; 2007 Feb 02; 1141(1):90-7. PubMed ID: 17182049
    [Abstract] [Full Text] [Related]

  • 39. The detection of nitro pesticides in mainstream and sidestream cigarette smoke using electron monochromator-mass spectrometry.
    Dane AJ, Havey CD, Voorhees KJ.
    Anal Chem; 2006 May 15; 78(10):3227-33. PubMed ID: 16689520
    [Abstract] [Full Text] [Related]

  • 40. Molecular dispersion spectroscopy for chemical sensing using chirped mid-infrared quantum cascade laser.
    Wysocki G, Weidmann D.
    Opt Express; 2010 Dec 06; 18(25):26123-40. PubMed ID: 21164961
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 9.