These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


273 related items for PubMed ID: 164904

  • 1. Studies on the active transfer of reducing equivalents into mitochondria via the malate-aspartate shuttle.
    Bremer J, Davis EJ.
    Biochim Biophys Acta; 1975 Mar 20; 376(3):387-97. PubMed ID: 164904
    [Abstract] [Full Text] [Related]

  • 2. Suppression of the mitochondrial oxidation of (-)-palmitylcarnitine by the malate-aspartate and alpha-glycerophosphate shuttles.
    Lumeng L, Bremer J, Davis EJ.
    J Biol Chem; 1976 Jan 25; 251(2):277-84. PubMed ID: 1245472
    [Abstract] [Full Text] [Related]

  • 3. Operation and energy dependence of the reducing-equivalent shuttles during lactate metabolism by isolated hepatocytes.
    Berry MN, Phillips JW, Gregory RB, Grivell AR, Wallace PG.
    Biochim Biophys Acta; 1992 Sep 09; 1136(3):223-30. PubMed ID: 1520699
    [Abstract] [Full Text] [Related]

  • 4. Characterization of shuttle mechanisms for the transport of reducing equivalents into mitochondria.
    Cederbaum AI, Lieber CS, Beattie DS, Rubin E.
    Arch Biochem Biophys; 1973 Oct 09; 158(2):763-81. PubMed ID: 4782532
    [No Abstract] [Full Text] [Related]

  • 5. Malate-aspartate shuttle and exogenous NADH/cytochrome c electron transport pathway as two independent cytosolic reducing equivalent transfer systems.
    Abbrescia DI, La Piana G, Lofrumento NE.
    Arch Biochem Biophys; 2012 Feb 15; 518(2):157-63. PubMed ID: 22239987
    [Abstract] [Full Text] [Related]

  • 6. In vivo and in vitro adenosine stimulation of ethanol oxidation by hepatocytes, and the role of the malate-aspartate shuttle.
    Hernández-Muñoz R, Díaz-Muñoz M, Chagoya de Sánchez V.
    Biochim Biophys Acta; 1987 Sep 14; 930(2):254-63. PubMed ID: 2887212
    [Abstract] [Full Text] [Related]

  • 7. Oxidation of reduced nicotinamide-adenine dinucleotide by the malate-aspartate shuttle in Ehrlich ascites tumour cells.
    Dionisi O, Longhi G, Eboli ML, Galeotti T, Terranova T.
    Biochim Biophys Acta; 1974 Mar 26; 333(3):577-80. PubMed ID: 4367964
    [No Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9. Control of reversible intracellular transfer of reducing potential.
    Kunz WS, Davis EJ.
    Arch Biochem Biophys; 1991 Jan 26; 284(1):40-6. PubMed ID: 1824912
    [Abstract] [Full Text] [Related]

  • 10. Glutamate and aspartate transport in rat brain mitochondria.
    Brand MD, Chappell JB.
    Biochem J; 1974 May 26; 140(2):205-10. PubMed ID: 4375961
    [Abstract] [Full Text] [Related]

  • 11. Octanoate affects 2,4-dinitrophenol uncoupling in intact isolated rat hepatocytes.
    Sibille B, Keriel C, Fontaine E, Catelloni F, Rigoulet M, Leverve XM.
    Eur J Biochem; 1995 Jul 15; 231(2):498-502. PubMed ID: 7635161
    [Abstract] [Full Text] [Related]

  • 12. Action of diclofenac on kidney mitochondria and cells.
    Ng LE, Vincent AS, Halliwell B, Wong KP.
    Biochem Biophys Res Commun; 2006 Sep 22; 348(2):494-500. PubMed ID: 16890207
    [Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14. Rapid oxidation of NADPH via the reconstituted malate-aspartate shuttle in systems containing mitochondrial and soluble fractions of rat liver: implications for ethanol metabolism.
    Dawson AG.
    Biochem Pharmacol; 1982 Sep 01; 31(17):2733-8. PubMed ID: 7138569
    [Abstract] [Full Text] [Related]

  • 15. Inhibition of electron and energy transfer in rat liver mitochondria by nordihydroguaiaretic acid.
    Bhuvaneswaran C, Dakshinamurti K.
    Biochemistry; 1972 Jan 04; 11(1):85-91. PubMed ID: 4333197
    [No Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17. Inactivation of coupled respiration of mitochondria by inorganic arsenate and partial restoration by ATP.
    Bhuvaneswaran C, Ho CH, Wadkins CL.
    Biochem Biophys Res Commun; 1972 Nov 01; 49(3):690-7. PubMed ID: 4638748
    [No Abstract] [Full Text] [Related]

  • 18. Low metformin causes a more oxidized mitochondrial NADH/NAD redox state in hepatocytes and inhibits gluconeogenesis by a redox-independent mechanism.
    Alshawi A, Agius L.
    J Biol Chem; 2019 Feb 22; 294(8):2839-2853. PubMed ID: 30591586
    [Abstract] [Full Text] [Related]

  • 19. Neuronal and astrocytic shuttle mechanisms for cytosolic-mitochondrial transfer of reducing equivalents: current evidence and pharmacological tools.
    McKenna MC, Waagepetersen HS, Schousboe A, Sonnewald U.
    Biochem Pharmacol; 2006 Feb 14; 71(4):399-407. PubMed ID: 16368075
    [Abstract] [Full Text] [Related]

  • 20. Interrelationships between malate-aspartate shuttle and citric acid cycle in rat heart mitochondria.
    LaNoue KF, Williamson JR.
    Metabolism; 1971 Feb 14; 20(2):119-40. PubMed ID: 4322086
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 14.