These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
191 related items for PubMed ID: 16497057
1. Limitations of the rigid planar nonpolarizable models of water. Baranyai A, Bartók A, Chialvo AA. J Chem Phys; 2006 Feb 21; 124(7):74507. PubMed ID: 16497057 [Abstract] [Full Text] [Related]
2. Vapor-liquid equilibria from the triple point up to the critical point for the new generation of TIP4P-like models: TIP4P/Ew, TIP4P/2005, and TIP4P/ice. Vega C, Abascal JL, Nezbeda I. J Chem Phys; 2006 Jul 21; 125(3):34503. PubMed ID: 16863358 [Abstract] [Full Text] [Related]
3. Characterization of the TIP4P-Ew water model: vapor pressure and boiling point. Horn HW, Swope WC, Pitera JW. J Chem Phys; 2005 Nov 15; 123(19):194504. PubMed ID: 16321097 [Abstract] [Full Text] [Related]
4. Clusters of classical water models. Kiss PT, Baranyai A. J Chem Phys; 2009 Nov 28; 131(20):204310. PubMed ID: 19947683 [Abstract] [Full Text] [Related]
5. The melting temperature of the most common models of water. Vega C, Sanz E, Abascal JL. J Chem Phys; 2005 Mar 15; 122(11):114507. PubMed ID: 15836229 [Abstract] [Full Text] [Related]
6. Computer simulation of two new solid phases of water: Ice XIII and ice XIV. Martin-Conde M, MacDowell LG, Vega C. J Chem Phys; 2006 Sep 21; 125(11):116101. PubMed ID: 16999507 [Abstract] [Full Text] [Related]
7. Surface tension of the most popular models of water by using the test-area simulation method. Vega C, de Miguel E. J Chem Phys; 2007 Apr 21; 126(15):154707. PubMed ID: 17461659 [Abstract] [Full Text] [Related]
8. Plastic crystal phases of simple water models. Aragones JL, Vega C. J Chem Phys; 2009 Jun 28; 130(24):244504. PubMed ID: 19566163 [Abstract] [Full Text] [Related]
9. Dielectric constant of ices and water: a lesson about water interactions. Aragones JL, MacDowell LG, Vega C. J Phys Chem A; 2011 Jun 16; 115(23):5745-58. PubMed ID: 20866096 [Abstract] [Full Text] [Related]
10. The short range anion-H interaction is the driving force for crystal formation of ions in water. Alejandre J, Chapela GA, Bresme F, Hansen JP. J Chem Phys; 2009 May 07; 130(17):174505. PubMed ID: 19425788 [Abstract] [Full Text] [Related]
11. Properties of ices at 0 K: a test of water models. Aragones JL, Noya EG, Abascal JL, Vega C. J Chem Phys; 2007 Oct 21; 127(15):154518. PubMed ID: 17949184 [Abstract] [Full Text] [Related]
12. Liquid-liquid phase transitions in supercooled water studied by computer simulations of various water models. Brovchenko I, Geiger A, Oleinikova A. J Chem Phys; 2005 Jul 22; 123(4):044515. PubMed ID: 16095377 [Abstract] [Full Text] [Related]
13. Simulating vapor-liquid nucleation of water: A combined histogram-reweighting and aggregation-volume-bias Monte Carlo investigation for fixed-charge and polarizable models. Chen B, Siepmann JI, Klein ML. J Phys Chem A; 2005 Feb 17; 109(6):1137-45. PubMed ID: 16833423 [Abstract] [Full Text] [Related]
16. The melting point of ice Ih for common water models calculated from direct coexistence of the solid-liquid interface. García Fernández R, Abascal JL, Vega C. J Chem Phys; 2006 Apr 14; 124(14):144506. PubMed ID: 16626213 [Abstract] [Full Text] [Related]
18. Relation between the melting temperature and the temperature of maximum density for the most common models of water. Vega C, Abascal JL. J Chem Phys; 2005 Oct 08; 123(14):144504. PubMed ID: 16238404 [Abstract] [Full Text] [Related]