These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


199 related items for PubMed ID: 16497329

  • 1. Expression profiling of Botrytis cinerea genes identifies three patterns of up-regulation in planta and an FKBP12 protein affecting pathogenicity.
    Gioti A, Simon A, Le Pêcheur P, Giraud C, Pradier JM, Viaud M, Levis C.
    J Mol Biol; 2006 Apr 28; 358(2):372-86. PubMed ID: 16497329
    [Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3. Ethylene sensing and gene activation in Botrytis cinerea: a missing link in ethylene regulation of fungus-plant interactions?
    Chagué V, Danit LV, Siewers V, Schulze-Gronover C, Tudzynski P, Tudzynski B, Sharon A.
    Mol Plant Microbe Interact; 2006 Jan 28; 19(1):33-42. PubMed ID: 16404951
    [Abstract] [Full Text] [Related]

  • 4. Expression profiling and mutant analysis reveals complex regulatory networks involved in Arabidopsis response to Botrytis infection.
    AbuQamar S, Chen X, Dhawan R, Bluhm B, Salmeron J, Lam S, Dietrich RA, Mengiste T.
    Plant J; 2006 Oct 28; 48(1):28-44. PubMed ID: 16925600
    [Abstract] [Full Text] [Related]

  • 5. The BOS loci of Arabidopsis are required for resistance to Botrytis cinerea infection.
    Veronese P, Chen X, Bluhm B, Salmeron J, Dietrich R, Mengiste T.
    Plant J; 2004 Nov 28; 40(4):558-74. PubMed ID: 15500471
    [Abstract] [Full Text] [Related]

  • 6. Proteomic analysis of phytopathogenic fungus Botrytis cinerea as a potential tool for identifying pathogenicity factors, therapeutic targets and for basic research.
    Fernández-Acero FJ, Jorge I, Calvo E, Vallejo I, Carbú M, Camafeita E, Garrido C, López JA, Jorrin J, Cantoral JM.
    Arch Microbiol; 2007 Mar 28; 187(3):207-15. PubMed ID: 17124592
    [Abstract] [Full Text] [Related]

  • 7. Role of the Botrytis cinerea FKBP12 ortholog in pathogenic development and in sulfur regulation.
    Meléndez HG, Billon-Grand G, Fèvre M, Mey G.
    Fungal Genet Biol; 2009 Apr 28; 46(4):308-20. PubMed ID: 19116175
    [Abstract] [Full Text] [Related]

  • 8. Botrytis cinerea endopolygalacturonase genes are differentially expressed in various plant tissues.
    ten Have A, Breuil WO, Wubben JP, Visser J, van Kan JA.
    Fungal Genet Biol; 2001 Jul 28; 33(2):97-105. PubMed ID: 11456462
    [Abstract] [Full Text] [Related]

  • 9. Does botrytis cinerea Ignore H(2)O(2)-induced oxidative stress during infection? Characterization of botrytis activator protein 1.
    Temme N, Tudzynski P.
    Mol Plant Microbe Interact; 2009 Aug 28; 22(8):987-98. PubMed ID: 19589074
    [Abstract] [Full Text] [Related]

  • 10. Disruption of Botrytis cinerea pectin methylesterase gene Bcpme1 reduces virulence on several host plants.
    Valette-Collet O, Cimerman A, Reignault P, Levis C, Boccara M.
    Mol Plant Microbe Interact; 2003 Apr 28; 16(4):360-7. PubMed ID: 12744465
    [Abstract] [Full Text] [Related]

  • 11. Ectopic expression of MgSM1, a Cerato-platanin family protein from Magnaporthe grisea, confers broad-spectrum disease resistance in Arabidopsis.
    Yang Y, Zhang H, Li G, Li W, Wang X, Song F.
    Plant Biotechnol J; 2009 Oct 28; 7(8):763-77. PubMed ID: 19754836
    [Abstract] [Full Text] [Related]

  • 12. NADPH oxidases are involved in differentiation and pathogenicity in Botrytis cinerea.
    Segmüller N, Kokkelink L, Giesbert S, Odinius D, van Kan J, Tudzynski P.
    Mol Plant Microbe Interact; 2008 Jun 28; 21(6):808-19. PubMed ID: 18624644
    [Abstract] [Full Text] [Related]

  • 13. Ku70 or Ku80 deficiencies in the fungus Botrytis cinerea facilitate targeting of genes that are hard to knock out in a wild-type context.
    Choquer M, Robin G, Le Pêcheur P, Giraud C, Levis C, Viaud M.
    FEMS Microbiol Lett; 2008 Dec 28; 289(2):225-32. PubMed ID: 19054110
    [Abstract] [Full Text] [Related]

  • 14. Plant nitrogen supply affects the Botrytis cinerea infection process and modulates known and novel virulence factors.
    Soulie MC, Koka SM, Floch K, Vancostenoble B, Barbe D, Daviere A, Soubigou-Taconnat L, Brunaud V, Poussereau N, Loisel E, Devallee A, Expert D, Fagard M.
    Mol Plant Pathol; 2020 Nov 28; 21(11):1436-1450. PubMed ID: 32939948
    [Abstract] [Full Text] [Related]

  • 15. Disruption of the Bcchs3a chitin synthase gene in Botrytis cinerea is responsible for altered adhesion and overstimulation of host plant immunity.
    Arbelet D, Malfatti P, Simond-Côte E, Fontaine T, Desquilbet L, Expert D, Kunz C, Soulié MC.
    Mol Plant Microbe Interact; 2010 Oct 28; 23(10):1324-34. PubMed ID: 20672878
    [Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19. Arabidopsis WRKY33 transcription factor is required for resistance to necrotrophic fungal pathogens.
    Zheng Z, Qamar SA, Chen Z, Mengiste T.
    Plant J; 2006 Nov 28; 48(4):592-605. PubMed ID: 17059405
    [Abstract] [Full Text] [Related]

  • 20. Wounding of Arabidopsis leaves causes a powerful but transient protection against Botrytis infection.
    Chassot C, Buchala A, Schoonbeek HJ, Métraux JP, Lamotte O.
    Plant J; 2008 Aug 28; 55(4):555-67. PubMed ID: 18452590
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 10.