These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


337 related items for PubMed ID: 16498675

  • 1. Setup and characterization of a multiphoton FLIM instrument for protein-protein interaction measurements in living cells.
    Waharte F, Spriet C, Héliot L.
    Cytometry A; 2006 Apr; 69(4):299-306. PubMed ID: 16498675
    [Abstract] [Full Text] [Related]

  • 2. A flow cytometric method to detect protein-protein interaction in living cells by directly visualizing donor fluorophore quenching during CFP-->YFP fluorescence resonance energy transfer (FRET).
    He L, Olson DP, Wu X, Karpova TS, McNally JG, Lipsky PE.
    Cytometry A; 2003 Oct; 55(2):71-85. PubMed ID: 14505312
    [Abstract] [Full Text] [Related]

  • 3. Sensitivity of CFP/YFP and GFP/mCherry pairs to donor photobleaching on FRET determination by fluorescence lifetime imaging microscopy in living cells.
    Tramier M, Zahid M, Mevel JC, Masse MJ, Coppey-Moisan M.
    Microsc Res Tech; 2006 Nov; 69(11):933-9. PubMed ID: 16941642
    [Abstract] [Full Text] [Related]

  • 4. High-precision FLIM-FRET in fixed and living cells reveals heterogeneity in a simple CFP-YFP fusion protein.
    Millington M, Grindlay GJ, Altenbach K, Neely RK, Kolch W, Bencina M, Read ND, Jones AC, Dryden DT, Magennis SW.
    Biophys Chem; 2007 May; 127(3):155-64. PubMed ID: 17336446
    [Abstract] [Full Text] [Related]

  • 5. The use of fluorescence microscopy to visualise homotypic interactions of tomato spotted wilt virus nucleocapsid protein in living cells.
    Snippe M, Borst JW, Goldbach R, Kormelink R.
    J Virol Methods; 2005 Apr; 125(1):15-22. PubMed ID: 15737412
    [Abstract] [Full Text] [Related]

  • 6. Characterization of two-photon excitation fluorescence lifetime imaging microscopy for protein localization.
    Chen Y, Periasamy A.
    Microsc Res Tech; 2004 Jan 01; 63(1):72-80. PubMed ID: 14677136
    [Abstract] [Full Text] [Related]

  • 7. Imaging protein molecules using FRET and FLIM microscopy.
    Wallrabe H, Periasamy A.
    Curr Opin Biotechnol; 2005 Feb 01; 16(1):19-27. PubMed ID: 15722011
    [Abstract] [Full Text] [Related]

  • 8. Fluorescence resonance energy transfer of GFP and YFP by spectral imaging and quantitative acceptor photobleaching.
    Dinant C, van Royen ME, Vermeulen W, Houtsmuller AB.
    J Microsc; 2008 Jul 01; 231(Pt 1):97-104. PubMed ID: 18638193
    [Abstract] [Full Text] [Related]

  • 9. Detection of the interaction between SNAP25 and rabphilin in neuroendocrine PC12 cells using the FLIM/FRET technique.
    Lee JD, Chang YF, Kao FJ, Kao LS, Lin CC, Lu AC, Shyu BC, Chiou SH, Yang DM.
    Microsc Res Tech; 2008 Jan 01; 71(1):26-34. PubMed ID: 17886343
    [Abstract] [Full Text] [Related]

  • 10. Quantitative FRET analysis with the EGFP-mCherry fluorescent protein pair.
    Albertazzi L, Arosio D, Marchetti L, Ricci F, Beltram F.
    Photochem Photobiol; 2009 Jan 01; 85(1):287-97. PubMed ID: 18764891
    [Abstract] [Full Text] [Related]

  • 11. In-depth fluorescence lifetime imaging analysis revealing SNAP25A-Rabphilin 3A interactions.
    Lee JD, Huang PC, Lin YC, Kao LS, Huang CC, Kao FJ, Lin CC, Yang DM.
    Microsc Microanal; 2008 Dec 01; 14(6):507-18. PubMed ID: 18986604
    [Abstract] [Full Text] [Related]

  • 12. Protein localization in living cells and tissues using FRET and FLIM.
    Chen Y, Mills JD, Periasamy A.
    Differentiation; 2003 Dec 01; 71(9-10):528-41. PubMed ID: 14686950
    [Abstract] [Full Text] [Related]

  • 13. Isolation of FRET-positive cells using single 408-nm laser flow cytometry.
    van Wageningen S, Pennings AH, van der Reijden BA, Boezeman JB, de Lange F, Jansen JH.
    Cytometry A; 2006 Apr 01; 69(4):291-8. PubMed ID: 16498686
    [Abstract] [Full Text] [Related]

  • 14. A feasible add-on upgrade on a commercial two-photon FLIM microscope for optimal FLIM-FRET imaging of CFP-YFP pairs.
    Xu L, Wang L, Zhang Z, Huang ZL.
    J Fluoresc; 2013 May 01; 23(3):543-9. PubMed ID: 23456419
    [Abstract] [Full Text] [Related]

  • 15. Optimized protocol of a frequency domain fluorescence lifetime imaging microscope for FRET measurements.
    Leray A, Riquet FB, Richard E, Spriet C, Trinel D, Héliot L.
    Microsc Res Tech; 2009 May 01; 72(5):371-9. PubMed ID: 19084885
    [Abstract] [Full Text] [Related]

  • 16. Concatenation of cyan and yellow fluorescent proteins for efficient resonance energy transfer.
    Shimozono S, Hosoi H, Mizuno H, Fukano T, Tahara T, Miyawaki A.
    Biochemistry; 2006 May 23; 45(20):6267-71. PubMed ID: 16700538
    [Abstract] [Full Text] [Related]

  • 17. Imaging FRET standards by steady-state fluorescence and lifetime methods.
    Domingo B, Sabariegos R, Picazo F, Llopis J.
    Microsc Res Tech; 2007 Dec 23; 70(12):1010-21. PubMed ID: 17722057
    [Abstract] [Full Text] [Related]

  • 18. Cyan and yellow super fluorescent proteins with improved brightness, protein folding, and FRET Förster radius.
    Kremers GJ, Goedhart J, van Munster EB, Gadella TW.
    Biochemistry; 2006 May 30; 45(21):6570-80. PubMed ID: 16716067
    [Abstract] [Full Text] [Related]

  • 19. A novel fluorescence lifetime imaging system that optimizes photon efficiency.
    Colyer RA, Lee C, Gratton E.
    Microsc Res Tech; 2008 Mar 30; 71(3):201-13. PubMed ID: 18008362
    [Abstract] [Full Text] [Related]

  • 20. Correlated fluorescence lifetime and spectral measurements in living cells.
    Spriet C, Trinel D, Waharte F, Deslee D, Vandenbunder B, Barbillat J, Héliot L.
    Microsc Res Tech; 2007 Feb 30; 70(2):85-94. PubMed ID: 17152071
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 17.