These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
78 related items for PubMed ID: 16499039
1. [Non-invasive determination of the optical properties of neonatal brain]. Zhao J, Ding HS, Hou XL, Zhou CL. Guang Pu Xue Yu Guang Pu Fen Xi; 2005 Nov; 25(11):1768-71. PubMed ID: 16499039 [Abstract] [Full Text] [Related]
3. Regional imager for low-resolution functional imaging of the brain with diffusing near-infrared light. Danen RM, Wang Y, Li XD, Thayer WS, Yodh AG. Photochem Photobiol; 1998 Jan; 67(1):33-40. PubMed ID: 9477763 [Abstract] [Full Text] [Related]
4. Multifrequency frequency-domain spectrometer for tissue analysis. Spichtig S, Hornung R, Brown DW, Haensse D, Wolf M. Rev Sci Instrum; 2009 Feb; 80(2):024301. PubMed ID: 19256664 [Abstract] [Full Text] [Related]
5. Sources of absorption and scattering contrast for near-infrared optical mammography. Cerussi AE, Berger AJ, Bevilacqua F, Shah N, Jakubowski D, Butler J, Holcombe RF, Tromberg BJ. Acad Radiol; 2001 Mar; 8(3):211-8. PubMed ID: 11249084 [Abstract] [Full Text] [Related]
6. Near-infrared spectroscopic cerebral oxygenation reading in neonates and infants is associated with central venous oxygen saturation. Weiss M, Dullenkopf A, Kolarova A, Schulz G, Frey B, Baenziger O. Paediatr Anaesth; 2005 Feb; 15(2):102-9. PubMed ID: 15675925 [Abstract] [Full Text] [Related]
7. In vivo determination of the optical properties of infant brain using frequency-domain near-infrared spectroscopy. Zhao J, Ding HS, Hou XL, Zhou CL, Chance B. J Biomed Opt; 2005 Feb; 10(2):024028. PubMed ID: 15910101 [Abstract] [Full Text] [Related]
8. Use of tissue oxygenation index and fractional tissue oxygen extraction as non-invasive parameters for cerebral oxygenation. A validation study in piglets. Naulaers G, Meyns B, Miserez M, Leunens V, Van Huffel S, Casaer P, Weindling M, Devlieger H. Neonatology; 2007 Feb; 92(2):120-6. PubMed ID: 17377413 [Abstract] [Full Text] [Related]
9. Noninvasive determination of the optical properties of adult brain: near-infrared spectroscopy approach. Choi J, Wolf M, Toronov V, Wolf U, Polzonetti C, Hueber D, Safonova LP, Gupta R, Michalos A, Mantulin W, Gratton E. J Biomed Opt; 2004 Feb; 9(1):221-9. PubMed ID: 14715077 [Abstract] [Full Text] [Related]
10. The effect of changes in tPCO2 on the fractional tissue oxygen extraction--as measured by near-infrared spectroscopy--in neonates during the first days of life. Vanderhaegen J, Naulaers G, Vanhole C, De Smet D, Van Huffel S, Vanhaesebrouck S, Devlieger H. Eur J Paediatr Neurol; 2009 Mar; 13(2):128-34. PubMed ID: 18619872 [Abstract] [Full Text] [Related]
11. Practicality of wavelength selection to improve signal-to-noise ratio in near-infrared spectroscopy. Sato H, Kiguchi M, Kawaguchi F, Maki A. Neuroimage; 2004 Apr; 21(4):1554-62. PubMed ID: 15050579 [Abstract] [Full Text] [Related]
12. Changes of cerebral blood oxygenation and optical pathlength during activation and deactivation in the prefrontal cortex measured by time-resolved near infrared spectroscopy. Sakatani K, Yamashita D, Yamanaka T, Oda M, Yamashita Y, Hoshino T, Fujiwara N, Murata Y, Katayama Y. Life Sci; 2006 May 01; 78(23):2734-41. PubMed ID: 16360709 [Abstract] [Full Text] [Related]
13. Near infrared and visible spectroscopic measurements to detect changes in light scattering and hemoglobin oxygen saturation from rat spinal cord during peripheral stimulation. Liu H, Radhakrishnan H, Senapati AK, Hagains CE, Peswani D, Mathker A, Peng YB. Neuroimage; 2008 Mar 01; 40(1):217-27. PubMed ID: 18191588 [Abstract] [Full Text] [Related]
15. [Monitoring cerebral oxygenation using near infrared spectroscopy during cardiopulmonary bypass surgery]. Teng YC, Ding HS, Gong QC, Jia ZS, Huang L, Wang PY. Guang Pu Xue Yu Guang Pu Fen Xi; 2006 May 01; 26(5):828-32. PubMed ID: 16883847 [Abstract] [Full Text] [Related]
16. Role of frequency domain optical spectroscopy in the detection of neonatal brain hemorrhage--a newborn piglet study. Stankovic MR, Maulik D, Rosenfeld W, Stubblefield PG, Kofinas AD, Gratton E, Franceschini MA, Fantini S, Hueber DM. J Matern Fetal Med; 2000 May 01; 9(2):142-9. PubMed ID: 10902831 [Abstract] [Full Text] [Related]
17. Liver tissue oxygenation as measured by near-infrared spectroscopy in the critically ill child in correlation with central venous oxygen saturation. Schulz G, Weiss M, Bauersfeld U, Teller J, Haensse D, Bucher HU, Baenziger O. Intensive Care Med; 2002 Feb 01; 28(2):184-9. PubMed ID: 11907662 [Abstract] [Full Text] [Related]
18. Contribution of the flow effect caused by shear-dependent RBC aggregation to NIR spectroscopic signals. Tomita M, Ohtomo M, Suzuki N. Neuroimage; 2006 Oct 15; 33(1):1-10. PubMed ID: 16877009 [Abstract] [Full Text] [Related]
19. Measuring brain hemodynamic changes in a songbird: responses to hypercapnia measured with functional MRI and near-infrared spectroscopy. Vignal C, Boumans T, Montcel B, Ramstein S, Verhoye M, Van Audekerke J, Mathevon N, Van der Linden A, Mottin S. Phys Med Biol; 2008 May 21; 53(10):2457-70. PubMed ID: 18424882 [Abstract] [Full Text] [Related]
20. Advances in near-infrared spectroscopy to study the brain of the preterm and term neonate. Wolf M, Greisen G. Clin Perinatol; 2009 Dec 21; 36(4):807-34, vi. PubMed ID: 19944837 [Abstract] [Full Text] [Related] Page: [Next] [New Search]