These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


204 related items for PubMed ID: 16500639

  • 1. Epithelial overexpression of BDNF and NT4 produces distinct gustatory axon morphologies that disrupt initial targeting.
    Lopez GF, Krimm RF.
    Dev Biol; 2006 Apr 15; 292(2):457-68. PubMed ID: 16500639
    [Abstract] [Full Text] [Related]

  • 2. Epithelial overexpression of BDNF or NT4 disrupts targeting of taste neurons that innervate the anterior tongue.
    Krimm RF, Miller KK, Kitzman PH, Davis BM, Albers KM.
    Dev Biol; 2001 Apr 15; 232(2):508-21. PubMed ID: 11401409
    [Abstract] [Full Text] [Related]

  • 3. NT4/5 mutant mice have deficiency in gustatory papillae and taste bud formation.
    Liebl DJ, Mbiene JP, Parada LF.
    Dev Biol; 1999 Sep 15; 213(2):378-89. PubMed ID: 10479455
    [Abstract] [Full Text] [Related]

  • 4. Epithelial-derived brain-derived neurotrophic factor is required for gustatory neuron targeting during a critical developmental period.
    Ma L, Lopez GF, Krimm RF.
    J Neurosci; 2009 Mar 18; 29(11):3354-64. PubMed ID: 19295142
    [Abstract] [Full Text] [Related]

  • 5. The neurotrophin receptor p75 regulates gustatory axon branching and promotes innervation of the tongue during development.
    Fei D, Huang T, Krimm RF.
    Neural Dev; 2014 Jun 24; 9():15. PubMed ID: 24961238
    [Abstract] [Full Text] [Related]

  • 6. Distinctive spatiotemporal expression patterns for neurotrophins develop in gustatory papillae and lingual tissues in embryonic tongue organ cultures.
    Nosrat CA, MacCallum DK, Mistretta CM.
    Cell Tissue Res; 2001 Jan 24; 303(1):35-45. PubMed ID: 11236003
    [Abstract] [Full Text] [Related]

  • 7. Refinement of innervation accuracy following initial targeting of peripheral gustatory fibers.
    Lopez GF, Krimm RF.
    J Neurobiol; 2006 Sep 01; 66(10):1033-43. PubMed ID: 16838366
    [Abstract] [Full Text] [Related]

  • 8. Lingual deficits in neurotrophin double knockout mice.
    Nosrat IV, Agerman K, Marinescu A, Ernfors P, Nosrat CA.
    J Neurocytol; 2004 Dec 01; 33(6):607-15. PubMed ID: 16217617
    [Abstract] [Full Text] [Related]

  • 9. Lingual BDNF and NT-3 mRNA expression patterns and their relation to innervation in the human tongue: similarities and differences compared with rodents.
    Nosrat IV, Lindskog S, Seiger A, Nosrat CA.
    J Comp Neurol; 2000 Feb 07; 417(2):133-52. PubMed ID: 10660893
    [Abstract] [Full Text] [Related]

  • 10. BDNF and NT4 play interchangeable roles in gustatory development.
    Huang T, Krimm RF.
    Dev Biol; 2014 Feb 15; 386(2):308-20. PubMed ID: 24378336
    [Abstract] [Full Text] [Related]

  • 11. Role of brain-derived neurotrophic factor in target invasion in the gustatory system.
    Ringstedt T, Ibáñez CF, Nosrat CA.
    J Neurosci; 1999 May 01; 19(9):3507-18. PubMed ID: 10212310
    [Abstract] [Full Text] [Related]

  • 12. Early development and innervation of taste bud-bearing papillae on the rat tongue.
    Farbman AI, Mbiene JP.
    J Comp Neurol; 1991 Feb 08; 304(2):172-86. PubMed ID: 2016415
    [Abstract] [Full Text] [Related]

  • 13. Gustatory papillae and taste bud development and maintenance in the absence of TrkB ligands BDNF and NT-4.
    Ito A, Nosrat CA.
    Cell Tissue Res; 2009 Sep 08; 337(3):349-59. PubMed ID: 19629530
    [Abstract] [Full Text] [Related]

  • 14. Taste placodes are primary targets of geniculate but not trigeminal sensory axons in mouse developing tongue.
    Mbiene JP.
    J Neurocytol; 2004 Dec 08; 33(6):617-29. PubMed ID: 16217618
    [Abstract] [Full Text] [Related]

  • 15. Embryonic geniculate ganglion neurons in culture have neurotrophin-specific electrophysiological properties.
    Al-Hadlaq SM, Bradley RM, MacCallum DK, Mistretta CM.
    Neuroscience; 2003 Dec 08; 118(1):145-59. PubMed ID: 12676146
    [Abstract] [Full Text] [Related]

  • 16. BDNF is required for the normal development of taste neurons in vivo.
    Zhang C, Brandemihl A, Lau D, Lawton A, Oakley B.
    Neuroreport; 1997 Mar 03; 8(4):1013-7. PubMed ID: 9141083
    [Abstract] [Full Text] [Related]

  • 17. Alterations in size, number, and morphology of gustatory papillae and taste buds in BDNF null mutant mice demonstrate neural dependence of developing taste organs.
    Mistretta CM, Goosens KA, Farinas I, Reichardt LF.
    J Comp Neurol; 1999 Jun 21; 409(1):13-24. PubMed ID: 10363708
    [Abstract] [Full Text] [Related]

  • 18. Development of fungiform papillae, taste buds, and their innervation in the hamster.
    Whitehead MC, Kachele DL.
    J Comp Neurol; 1994 Feb 22; 340(4):515-30. PubMed ID: 8006215
    [Abstract] [Full Text] [Related]

  • 19. Initial innervation of embryonic rat tongue and developing taste papillae: nerves follow distinctive and spatially restricted pathways.
    Mbiene JP, Mistretta CM.
    Acta Anat (Basel); 1997 Feb 22; 160(3):139-58. PubMed ID: 9718388
    [Abstract] [Full Text] [Related]

  • 20. Neurotrophin-4 is more potent than brain-derived neurotrophic factor in promoting, attracting and suppressing geniculate ganglion neurite outgrowth.
    Runge EM, Hoshino N, Biehl MJ, Ton S, Rochlin MW.
    Dev Neurosci; 2012 Feb 22; 34(5):389-401. PubMed ID: 23151843
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 11.