These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. Plant peroxidases: substrate complexes with mechanistic implications. Gajhede M. Biochem Soc Trans; 2001 May 15; 29(Pt 2):91-98. PubMed ID: 11356134 [Abstract] [Full Text] [Related]
6. Differential activity and structure of highly similar peroxidases. Spectroscopic, crystallographic, and enzymatic analyses of lignifying Arabidopsis thaliana peroxidase A2 and horseradish peroxidase A2. Nielsen KL, Indiani C, Henriksen A, Feis A, Becucci M, Gajhede M, Smulevich G, Welinder KG. Biochemistry; 2001 Sep 18; 40(37):11013-21. PubMed ID: 11551197 [Abstract] [Full Text] [Related]
7. Prosthetic heme modification during halide ion oxidation. Demonstration of chloride oxidation by horseradish peroxidase. Huang L, Wojciechowski G, Ortiz de Montellano PR. J Am Chem Soc; 2005 Apr 20; 127(15):5345-53. PubMed ID: 15826172 [Abstract] [Full Text] [Related]
8. Structural interactions between horseradish peroxidase C and the substrate benzhydroxamic acid determined by X-ray crystallography. Henriksen A, Schuller DJ, Meno K, Welinder KG, Smith AT, Gajhede M. Biochemistry; 1998 Jun 02; 37(22):8054-60. PubMed ID: 9609699 [Abstract] [Full Text] [Related]
10. Horseradish peroxidase-mediated aerobic and anaerobic oxidations of 3-alkylindoles. Ling KQ, Sayre LM. Bioorg Med Chem; 2005 May 16; 13(10):3543-51. PubMed ID: 15848767 [Abstract] [Full Text] [Related]
11. Active site structure and catalytic mechanisms of human peroxidases. Furtmüller PG, Zederbauer M, Jantschko W, Helm J, Bogner M, Jakopitsch C, Obinger C. Arch Biochem Biophys; 2006 Jan 15; 445(2):199-213. PubMed ID: 16288970 [Abstract] [Full Text] [Related]
12. Factors controlling the substrate specificity of peroxidases: kinetics and thermodynamics of the reaction of horseradish peroxidase compound I with phenols and indole-3-acetic acids. Candeias LP, Folkes LK, Wardman P. Biochemistry; 1997 Jun 10; 36(23):7081-5. PubMed ID: 9188707 [Abstract] [Full Text] [Related]
15. Luminol activity of horseradish peroxidase mutants mimicking a proposed binding site for luminol in Arthromyces ramosus peroxidase. Tanaka M, Ishimori K, Morishima I. Biochemistry; 1999 Aug 10; 38(32):10463-73. PubMed ID: 10441142 [Abstract] [Full Text] [Related]
16. Redox properties of heme peroxidases. Battistuzzi G, Bellei M, Bortolotti CA, Sola M. Arch Biochem Biophys; 2010 Aug 01; 500(1):21-36. PubMed ID: 20211593 [Abstract] [Full Text] [Related]
17. Mechanism of reaction of melatonin with human myeloperoxidase. Allegra M, Furtmüller PG, Regelsberger G, Turco-Liveri ML, Tesoriere L, Perretti M, Livrea MA, Obinger C. Biochem Biophys Res Commun; 2001 Mar 30; 282(2):380-6. PubMed ID: 11401469 [Abstract] [Full Text] [Related]
18. Naturally-occurring tetrahydro-β-carboline alkaloids derived from tryptophan are oxidized to bioactive β-carboline alkaloids by heme peroxidases. Herraiz T, Galisteo J. Biochem Biophys Res Commun; 2014 Aug 15; 451(1):42-7. PubMed ID: 25035927 [Abstract] [Full Text] [Related]
19. Identification of a critical phenylalanine residue in horseradish peroxidase, Phe179, by site-directed mutagenesis and 1H-NMR: implications for complex formation with aromatic donor molecules. Veitch NC, Gao Y, Smith AT, White CG. Biochemistry; 1997 Dec 02; 36(48):14751-61. PubMed ID: 9398195 [Abstract] [Full Text] [Related]
20. Versatile peroxidase oxidation of high redox potential aromatic compounds: site-directed mutagenesis, spectroscopic and crystallographic investigation of three long-range electron transfer pathways. Pérez-Boada M, Ruiz-Dueñas FJ, Pogni R, Basosi R, Choinowski T, Martínez MJ, Piontek K, Martínez AT. J Mol Biol; 2005 Nov 25; 354(2):385-402. PubMed ID: 16246366 [Abstract] [Full Text] [Related] Page: [Next] [New Search]