These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


245 related items for PubMed ID: 16504239

  • 1. Evaluation of Al30 polynuclear species in polyaluminum solutions as coagulant for water treatment.
    Chen Z, Fan B, Peng X, Zhang Z, Fan J, Luan Z.
    Chemosphere; 2006 Aug; 64(6):912-8. PubMed ID: 16504239
    [Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5. Characterization and coagulation of a polyaluminum chloride (PAC) coagulant with high Al13 content.
    Gao BY, Chu YB, Yue QY, Wang BJ, Wang SG.
    J Environ Manage; 2005 Jul; 76(2):143-7. PubMed ID: 15939126
    [Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9. Mechanism of natural organic matter removal by polyaluminum chloride: effect of coagulant particle size and hydrolysis kinetics.
    Yan M, Wang D, Ni J, Qu J, Chow CW, Liu H.
    Water Res; 2008 Jul; 42(13):3361-70. PubMed ID: 18519148
    [Abstract] [Full Text] [Related]

  • 10. [Electrical charges and coagulation efficiency of Al13 species in polyaluminum chloride (PAC)].
    Chu YB, Gao BY, Yue QY, Wang Y, Wang SG.
    Huan Jing Ke Xue; 2005 Nov; 26(6):119-22. PubMed ID: 16447443
    [Abstract] [Full Text] [Related]

  • 11. Characteristics of BPA removal from water by PACl-Al13 in coagulation process.
    Xiaoying M, Guangming Z, Chang Z, Zisong W, Jian Y, Jianbing L, Guohe H, Hongliang L.
    J Colloid Interface Sci; 2009 Sep 15; 337(2):408-13. PubMed ID: 19555959
    [Abstract] [Full Text] [Related]

  • 12. Improved virus removal by high-basicity polyaluminum coagulants compared to commercially available aluminum-based coagulants.
    Shirasaki N, Matsushita T, Matsui Y, Oshiba A, Marubayashi T, Sato S.
    Water Res; 2014 Jan 01; 48():375-86. PubMed ID: 24139360
    [Abstract] [Full Text] [Related]

  • 13. Enhanced coagulation for high alkalinity and micro-polluted water: the third way through coagulant optimization.
    Yan M, Wang D, Qu J, Ni J, Chow CW.
    Water Res; 2008 Apr 01; 42(8-9):2278-86. PubMed ID: 18206207
    [Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18. Minimizing residual aluminum concentration in treated water by tailoring properties of polyaluminum coagulants.
    Kimura M, Matsui Y, Kondo K, Ishikawa TB, Matsushita T, Shirasaki N.
    Water Res; 2013 Apr 15; 47(6):2075-84. PubMed ID: 23422138
    [Abstract] [Full Text] [Related]

  • 19. Influence of some additives to aluminium species distribution in aluminium coagulants.
    Zhang P, Hahn HH, Hoffmann E, Zeng G.
    Chemosphere; 2004 Dec 15; 57(10):1489-94. PubMed ID: 15519393
    [Abstract] [Full Text] [Related]

  • 20. Fate of hydrolyzed Al species in humic acid coagulation.
    Lin JL, Huang C, Dempsey B, Hu JY.
    Water Res; 2014 Jun 01; 56():314-24. PubMed ID: 24704984
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 13.