These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
252 related items for PubMed ID: 16504560
21. Molecular dynamics simulations applied to the study of subtypes of HIV-1 protease common to Brazil, Africa, and Asia. Batista PR, Wilter A, Durham EH, Pascutti PG. Cell Biochem Biophys; 2006; 44(3):395-404. PubMed ID: 16679526 [Abstract] [Full Text] [Related]
22. Crystal structure of an in vivo HIV-1 protease mutant in complex with saquinavir: insights into the mechanisms of drug resistance. Hong L, Zhang XC, Hartsuck JA, Tang J. Protein Sci; 2000 Oct; 9(10):1898-904. PubMed ID: 11106162 [Abstract] [Full Text] [Related]
23. Molecular dynamics study of the connection between flap closing and binding of fullerene-based inhibitors of the HIV-1 protease. Zhu Z, Schuster DI, Tuckerman ME. Biochemistry; 2003 Feb 11; 42(5):1326-33. PubMed ID: 12564936 [Abstract] [Full Text] [Related]
24. Solution NMR evidence that the HIV-1 protease catalytic aspartyl groups have different ionization states in the complex formed with the asymmetric drug KNI-272. Wang YX, Freedberg DI, Yamazaki T, Wingfield PT, Stahl SJ, Kaufman JD, Kiso Y, Torchia DA. Biochemistry; 1996 Aug 06; 35(31):9945-50. PubMed ID: 8756455 [Abstract] [Full Text] [Related]
25. Insights into saquinavir resistance in the G48V HIV-1 protease: quantum calculations and molecular dynamic simulations. Wittayanarakul K, Aruksakunwong O, Saen-oon S, Chantratita W, Parasuk V, Sompornpisut P, Hannongbua S. Biophys J; 2005 Feb 06; 88(2):867-79. PubMed ID: 15542562 [Abstract] [Full Text] [Related]
26. A contribution to the drug resistance mechanism of darunavir, amprenavir, indinavir, and saquinavir complexes with HIV-1 protease due to flap mutation I50V: a systematic MM-PBSA and thermodynamic integration study. Leonis G, Steinbrecher T, Papadopoulos MG. J Chem Inf Model; 2013 Aug 26; 53(8):2141-53. PubMed ID: 23834142 [Abstract] [Full Text] [Related]
27. Multidrug resistance to HIV-1 protease inhibition requires cooperative coupling between distal mutations. Ohtaka H, Schön A, Freire E. Biochemistry; 2003 Nov 25; 42(46):13659-66. PubMed ID: 14622012 [Abstract] [Full Text] [Related]
28. Inhibition and catalytic mechanism of HIV-1 aspartic protease. Silva AM, Cachau RE, Sham HL, Erickson JW. J Mol Biol; 1996 Jan 19; 255(2):321-46. PubMed ID: 8551523 [Abstract] [Full Text] [Related]
29. Effect of flap mutations on structure of HIV-1 protease and inhibition by saquinavir and darunavir. Liu F, Kovalevsky AY, Tie Y, Ghosh AK, Harrison RW, Weber IT. J Mol Biol; 2008 Aug 01; 381(1):102-15. PubMed ID: 18597780 [Abstract] [Full Text] [Related]
30. An ethylenamine inhibitor binds tightly to both wild type and mutant HIV-1 proteases. Structure and energy study. Skálová T, Hasek J, Dohnálek J, Petroková H, Buchtelová E, Dusková J, Soucek M, Majer P, Uhlíková T, Konvalinka J. J Med Chem; 2003 Apr 24; 46(9):1636-44. PubMed ID: 12699382 [Abstract] [Full Text] [Related]
31. Molecular dynamics and free energy studies on the wild-type and mutated HIV-1 protease complexed with four approved drugs: mechanism of binding and drug resistance. Alcaro S, Artese A, Ceccherini-Silberstein F, Ortuso F, Perno CF, Sing T, Svicher V. J Chem Inf Model; 2009 Jul 24; 49(7):1751-61. PubMed ID: 19537723 [Abstract] [Full Text] [Related]
32. A phenylnorstatine inhibitor binding to HIV-1 protease: geometry, protonation, and subsite-pocket interactions analyzed at atomic resolution. Brynda J, Rezacova P, Fabry M, Horejsi M, Stouracova R, Sedlacek J, Soucek M, Hradilek M, Lepsik M, Konvalinka J. J Med Chem; 2004 Apr 08; 47(8):2030-6. PubMed ID: 15056001 [Abstract] [Full Text] [Related]
33. Interactions of the dimeric triad of HIV-1 aspartyl protease with inhibitors. Mager PP, De Clercq E, Froeyen M, Reinhardt R. Drug Des Discov; 2003 Apr 08; 18(2-3):53-64. PubMed ID: 14675943 [Abstract] [Full Text] [Related]
34. Binding free energy contributions of interfacial waters in HIV-1 protease/inhibitor complexes. Lu Y, Yang CY, Wang S. J Am Chem Soc; 2006 Sep 13; 128(36):11830-9. PubMed ID: 16953623 [Abstract] [Full Text] [Related]
35. Mapping hydration water molecules in the HIV-1 protease/DMP323 complex in solution by NMR spectroscopy. Wang YX, Freedberg DI, Grzesiek S, Torchia DA, Wingfield PT, Kaufman JD, Stahl SJ, Chang CH, Hodge CN. Biochemistry; 1996 Oct 01; 35(39):12694-704. PubMed ID: 8841113 [Abstract] [Full Text] [Related]
36. Comparative studies on inhibitors of HIV protease: a target for drug design. Jayaraman S, Shah K. In Silico Biol; 2008 Oct 01; 8(5-6):427-47. PubMed ID: 19374129 [Abstract] [Full Text] [Related]
37. Molecular analysis of the HIV-1 resistance development: enzymatic activities, crystal structures, and thermodynamics of nelfinavir-resistant HIV protease mutants. Kozísek M, Bray J, Rezácová P, Sasková K, Brynda J, Pokorná J, Mammano F, Rulísek L, Konvalinka J. J Mol Biol; 2007 Dec 07; 374(4):1005-16. PubMed ID: 17977555 [Abstract] [Full Text] [Related]
38. Relation between sequence and structure of HIV-1 protease inhibitor complexes: a model system for the analysis of protein flexibility. Zoete V, Michielin O, Karplus M. J Mol Biol; 2002 Jan 04; 315(1):21-52. PubMed ID: 11771964 [Abstract] [Full Text] [Related]
39. Kinetic properties of saquinavir-resistant mutants of human immunodeficiency virus type 1 protease and their implications in drug resistance in vivo. Ermolieff J, Lin X, Tang J. Biochemistry; 1997 Oct 07; 36(40):12364-70. PubMed ID: 9315877 [Abstract] [Full Text] [Related]
40. Interactions of different inhibitors with active-site aspartyl residues of HIV-1 protease and possible relevance to pepsin. Sayer JM, Louis JM. Proteins; 2009 May 15; 75(3):556-68. PubMed ID: 18951411 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]